Performance Investigation of a Three Fluid Heat Exchanger Used in Domestic Heating Applications

Taraprasad Mohapatra, S. Sahoo, S. Mishra, Prasheet Mishra, D. Biswal
{"title":"Performance Investigation of a Three Fluid Heat Exchanger Used in Domestic Heating Applications","authors":"Taraprasad Mohapatra, S. Sahoo, S. Mishra, Prasheet Mishra, D. Biswal","doi":"10.15282/ijame.19.2.2022.06.0748","DOIUrl":null,"url":null,"abstract":"Recent work analytically investigates the heat transfer characteristics of a three fluid heat exchanger used for domestic heating applications with respect to different design parameters, i.e. flow rate, inlet temperature, tube diameter, coil diameter, and coil pitch. The present and previous results are compared with the literature. Overall agreement among these results are observed with little variation. Afterwards, the present temperature data was verified with prior experimental data and little deviation observed in these results vary from -4.28 % to +6.68 % and -6.17% to +5.92% in parallel and counter flow configuration, respectively. It is ensued that the coil side Nusselt number increases with the rise in coil side fluid flow rate and inlet temperature, coil outside fluid inlet temperature and coil diameter respectively. The increment in coil side flow rate and inlet temperature are identified as the major contributors, with 297% and 39.5% contributions. Similarly, growth in coil outside Nusselt number is observed with the rise in coil side fluid inlet temperature and flow rate, coil outside fluid flow rate and inlet temperature, and coil pitch respectively. The coil pitch and flow rate at the coil outside are identified as major contributors with 36% and 28.5% contribution repsectively. Distinct correlations for heat transfer in the present HEx are proposed for coil inside and outside fluid flow in a turbulent flow regime. The developed correlations results are compared with the present result, and reasonable agreement is observed within the data range of +13% to -14% and +10% to -11% for coil inside and outside Nusselt number, respectively.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"45 5 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.19.2.2022.06.0748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Recent work analytically investigates the heat transfer characteristics of a three fluid heat exchanger used for domestic heating applications with respect to different design parameters, i.e. flow rate, inlet temperature, tube diameter, coil diameter, and coil pitch. The present and previous results are compared with the literature. Overall agreement among these results are observed with little variation. Afterwards, the present temperature data was verified with prior experimental data and little deviation observed in these results vary from -4.28 % to +6.68 % and -6.17% to +5.92% in parallel and counter flow configuration, respectively. It is ensued that the coil side Nusselt number increases with the rise in coil side fluid flow rate and inlet temperature, coil outside fluid inlet temperature and coil diameter respectively. The increment in coil side flow rate and inlet temperature are identified as the major contributors, with 297% and 39.5% contributions. Similarly, growth in coil outside Nusselt number is observed with the rise in coil side fluid inlet temperature and flow rate, coil outside fluid flow rate and inlet temperature, and coil pitch respectively. The coil pitch and flow rate at the coil outside are identified as major contributors with 36% and 28.5% contribution repsectively. Distinct correlations for heat transfer in the present HEx are proposed for coil inside and outside fluid flow in a turbulent flow regime. The developed correlations results are compared with the present result, and reasonable agreement is observed within the data range of +13% to -14% and +10% to -11% for coil inside and outside Nusselt number, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
家用供热用三流体换热器的性能研究
最近的工作分析研究了用于家庭供暖的三流体换热器在不同设计参数(即流量、入口温度、管径、盘管直径和盘管间距)下的传热特性。本文和以往的结果与文献进行了比较。这些结果大体上一致,几乎没有变化。随后,将所得温度数据与先前的实验数据进行了验证,在平行流和逆流配置下,所得温度数据偏差较小,分别为- 4.28% ~ + 6.68%和-6.17% ~ +5.92%。由此可知,盘管侧努塞尔数分别随着盘管侧流体流量和入口温度、盘管外流体入口温度和盘管直径的升高而增大。盘管侧流量的增加和进口温度的增加是主要的影响因素,分别为297%和39.5%。同样,随着线圈侧流体进口温度和流量、线圈外流体流量和进口温度以及线圈节距的升高,线圈外努塞尔数也随之增加。线圈间距和线圈外部的流量是主要的影响因素,分别为36%和28.5%。在当前HEx中,对于湍流状态下线圈内部和外部流体流动的传热提出了明显的相关性。将建立的相关结果与现有结果进行了比较,发现线圈内、外努塞尔数在+13% ~ -14%和+10% ~ -11%的数据范围内具有较好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
10.00%
发文量
43
审稿时长
20 weeks
期刊介绍: The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.
期刊最新文献
Motion Sickness Susceptibility Among Malaysians When Travelling in a Moving Vehicle The Effect of Motorcycle Helmet Type on Head Response in Oblique Impact Effect of Bilayer Nano-Micro Hydroxyapatite on the Surface Characteristics of Implanted Ti-6Al-4V ELI A Prediction of Graphene Nanoplatelets Addition Effects on Diesel Engine Emissions The Effect of Landing Gear Dimension Variation on the Static Strength and Dynamic Response of Unmanned Aerial Vehicle (UAV)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1