{"title":"Linear logic without boxes","authors":"Georges Gonthier, M. Abadi, J. Lévy","doi":"10.1109/LICS.1992.185535","DOIUrl":null,"url":null,"abstract":"J.-Y. Girard's original definition of proof nets for linear logic involves boxes. The box is the unit for erasing and duplicating fragments of proof nets. It imposes synchronization, limits sharing, and impedes a completely local view of computation. The authors describe an implementation of proof nets without boxes. Proof nets are translated into graphs of the sort used in optimal lambda -calculus implementations; computation is performed by simple graph rewriting. This graph implementation helps in understanding optimal reductions in the lambda -calculus and in the various programming languages inspired by linear logic.<<ETX>>","PeriodicalId":6412,"journal":{"name":"[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science","volume":"21 1","pages":"223-234"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1992.185535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95
Abstract
J.-Y. Girard's original definition of proof nets for linear logic involves boxes. The box is the unit for erasing and duplicating fragments of proof nets. It imposes synchronization, limits sharing, and impedes a completely local view of computation. The authors describe an implementation of proof nets without boxes. Proof nets are translated into graphs of the sort used in optimal lambda -calculus implementations; computation is performed by simple graph rewriting. This graph implementation helps in understanding optimal reductions in the lambda -calculus and in the various programming languages inspired by linear logic.<>