Finite-Time Neural Impedance Control for an Uncertain Robotic Manipulator

Chengqian Xue, Xinbo Yu, Wei He, Changyin Sun
{"title":"Finite-Time Neural Impedance Control for an Uncertain Robotic Manipulator","authors":"Chengqian Xue, Xinbo Yu, Wei He, Changyin Sun","doi":"10.1109/YAC.2019.8787678","DOIUrl":null,"url":null,"abstract":"This paper proposes a finite-time neural impedance control for a robotic manipulator. A position-based impedance controller is proposed to improve the safety and compliance when robotic manipulator contacts with environment physically. Radial basis functions neural networks (RBFNNs) are employed to compensate uncertainties in robotic manipulator dynamics. A finite-time control method is developed with the back-stepping technique to improve the tracking performance. Large external forces can be avoided and desired impedance model can be achieved quickly under our proposed method. The stability in the close-loop system is proven by Lyapunov theory, and all error signals in the system are semi-global practical finite time stable (SGPFS) and the system output converges to reference signals in finite time under our proposed controller. Finally, comparative simulations are proposed to verify the effectiveness of our proposed method.","PeriodicalId":6669,"journal":{"name":"2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","volume":"1986 1","pages":"42-46"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YAC.2019.8787678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes a finite-time neural impedance control for a robotic manipulator. A position-based impedance controller is proposed to improve the safety and compliance when robotic manipulator contacts with environment physically. Radial basis functions neural networks (RBFNNs) are employed to compensate uncertainties in robotic manipulator dynamics. A finite-time control method is developed with the back-stepping technique to improve the tracking performance. Large external forces can be avoided and desired impedance model can be achieved quickly under our proposed method. The stability in the close-loop system is proven by Lyapunov theory, and all error signals in the system are semi-global practical finite time stable (SGPFS) and the system output converges to reference signals in finite time under our proposed controller. Finally, comparative simulations are proposed to verify the effectiveness of our proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不确定机械臂的有限时间神经阻抗控制
提出了一种机器人机械臂的有限时间神经阻抗控制方法。为了提高机械臂与环境物理接触时的安全性和顺应性,提出了一种基于位置的阻抗控制器。采用径向基函数神经网络(RBFNNs)对机器人机械臂动力学中的不确定性进行补偿。为了提高系统的跟踪性能,提出了一种基于反步技术的有限时间控制方法。该方法可以避免较大的外力,并能快速得到理想的阻抗模型。利用Lyapunov理论证明了闭环系统的稳定性,系统中的所有误差信号都是半全局实用有限时间稳定的(SGPFS),系统输出在有限时间内收敛到参考信号。最后,通过对比仿真验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Kinematics Analysis of a Bionic Finger Hand Rehabilitation Robot Mechanism The PI Control Method in the Input Multi-rate Digital Control System with Low Sample-rate Sensors Exact Delay Margin on Containment Control for Discrete-Time First-Order Multi-Agent Systems The driverless car based on the online learning platform realizes the red light recognition and lane line recognition Path Planning of Multiple AGVs Using a Time-space Network Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1