Dynamic Modelling, Experimental Identification and Computer Simulations of Non-Stationary Vibration in High-Speed Elevators

IF 1.2 4区 工程技术 Q3 ENGINEERING, MECHANICAL Strojniski Vestnik-Journal of Mechanical Engineering Pub Date : 2021-06-15 DOI:10.5545/SV-JME.2020.7179
R. Đokić, J. Vladić, M. Kljajin, V. Jovanović, G. Marković, Mirko Karakasic
{"title":"Dynamic Modelling, Experimental Identification and Computer Simulations of Non-Stationary Vibration in High-Speed Elevators","authors":"R. Đokić, J. Vladić, M. Kljajin, V. Jovanović, G. Marković, Mirko Karakasic","doi":"10.5545/SV-JME.2020.7179","DOIUrl":null,"url":null,"abstract":"Modelling the dynamic behaviour of elevators with high lifting velocities (contemporary elevators in building construction and mine elevators) is a complex task and an important step in the design process and creating conditions for safe and reliable exploitation of these machines. Due to high heights and lifting velocities, the standard procedures for dynamic exploitation are not adequate. The study presents the method of forming a dynamic model to analyse nonstationary vibrations of a rope with time-varying length with nonholonomic boundary conditions in the position where the rope is connected with the cabin (cage) and in the upcoming point of its winding onto the pulley (drum). A unique method was applied to identify the basic parameters of the dynamic model (stiffness and damping) based on experimental measures for a concrete elevator. Due to the verification of this procedure, the experiment was conducted on a mine elevator in RTB Bor, Serbia. Using the obtained computer-experimental results, the simulations of the dynamic behaviour of an empty and loaded cage were shown. In addition, the study shows the specific method as the basis for forming a control program that would enable the decrease in vertical vibrations during an elevator starting and braking mode.","PeriodicalId":49472,"journal":{"name":"Strojniski Vestnik-Journal of Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strojniski Vestnik-Journal of Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5545/SV-JME.2020.7179","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Modelling the dynamic behaviour of elevators with high lifting velocities (contemporary elevators in building construction and mine elevators) is a complex task and an important step in the design process and creating conditions for safe and reliable exploitation of these machines. Due to high heights and lifting velocities, the standard procedures for dynamic exploitation are not adequate. The study presents the method of forming a dynamic model to analyse nonstationary vibrations of a rope with time-varying length with nonholonomic boundary conditions in the position where the rope is connected with the cabin (cage) and in the upcoming point of its winding onto the pulley (drum). A unique method was applied to identify the basic parameters of the dynamic model (stiffness and damping) based on experimental measures for a concrete elevator. Due to the verification of this procedure, the experiment was conducted on a mine elevator in RTB Bor, Serbia. Using the obtained computer-experimental results, the simulations of the dynamic behaviour of an empty and loaded cage were shown. In addition, the study shows the specific method as the basis for forming a control program that would enable the decrease in vertical vibrations during an elevator starting and braking mode.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高速电梯非平稳振动的动力学建模、实验辨识与计算机仿真
高提升速度电梯(建筑施工中的现代电梯和矿井电梯)的动力学行为建模是一项复杂的任务,也是设计过程中的重要步骤,为这些机器的安全可靠使用创造条件。由于矿井高度和提升速度高,动态开采的标准程序是不够的。本文提出了在非完整边界条件下,建立时变长度绳索与舱(笼)连接位置和即将卷绕到皮带轮(滚筒)上的非平稳振动动力学模型的方法。基于混凝土提升机的试验数据,采用一种独特的方法确定了混凝土提升机动力模型的基本参数(刚度和阻尼)。为了验证该程序,在塞尔维亚RTB Bor的矿井提升机上进行了实验。利用所得的计算机实验结果,对空、载笼的动力特性进行了模拟。此外,研究还表明,该方法可作为形成控制程序的基础,使电梯启动和制动模式下的垂直振动减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
17.60%
发文量
56
审稿时长
4.1 months
期刊介绍: The international journal publishes original and (mini)review articles covering the concepts of materials science, mechanics, kinematics, thermodynamics, energy and environment, mechatronics and robotics, fluid mechanics, tribology, cybernetics, industrial engineering and structural analysis. The journal follows new trends and progress proven practice in the mechanical engineering and also in the closely related sciences as are electrical, civil and process engineering, medicine, microbiology, ecology, agriculture, transport systems, aviation, and others, thus creating a unique forum for interdisciplinary or multidisciplinary dialogue.
期刊最新文献
Dynamic Modelling, Experimental Identification and Computer Simulations of Non-Stationary Vibration in High-Speed Elevators Reliability-Based Design Optimization of Pump Penetration Shell Accounting for Material and Geometric Non-Linearity Flat Specimen Shape Recognition Based on Full-Field Optical Measurements and Registration Using Mapping Error Minimization Method Optimization of the Internal Roller Burnishing Process for Energy Reduction and Surface Properties Residual, Corrosion & Tribological Behavior of HVOF Sprayed Sustainable Temperature-Dependent Carbon-Based Hybrid Composite Coating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1