Analysis of factors affecting occupant injury severity in rear-end crashes by different struck vehicle groups: A random thresholds random parameters hierarchical ordered probit model

IF 2.4 3区 工程技术 Q3 TRANSPORTATION Journal of Transportation Safety & Security Pub Date : 2022-07-14 DOI:10.1080/19439962.2022.2098891
Renteng Yuan, Xin Gu, Zhipeng Peng, Q. Xiang
{"title":"Analysis of factors affecting occupant injury severity in rear-end crashes by different struck vehicle groups: A random thresholds random parameters hierarchical ordered probit model","authors":"Renteng Yuan, Xin Gu, Zhipeng Peng, Q. Xiang","doi":"10.1080/19439962.2022.2098891","DOIUrl":null,"url":null,"abstract":"Abstract This study aims to explore the variability of risk factors affecting injury severity in rear-end crashes when different struck vehicle groups are involved. Two types of rear-end crash data, vehicle-strike-car data, vehicle-strike-truck data, are extracted from the Fatality Analysis Reporting System (FARS). Two likelihood ratio (LR) tests are firstly performed to validate the struck vehicle group variations, and then two separate random thresholds random parameters hierarchical ordered probit (RRHOP) models (Model 1 and Model 2) are established to capture unobserved heterogeneity. The results of LR test show significant differences in the effects of factors included in each model. Moreover, the model results suggest that SUVs, vans, and large trucks as striking vehicles are significant related to injury severity in both models with different effects. Factors such as speeding related, pickup, model year (struck vehicle), disabled damage, adverse weather, speed limit (≥60 mile/h), and young driver (struck vehicle) are found to be statistically significant in only model 1. These results provide a better understanding of differences in contributing factors of rear-end crashes, which help to propose effective countermeasures to mitigate its injury severity.","PeriodicalId":46672,"journal":{"name":"Journal of Transportation Safety & Security","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Transportation Safety & Security","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19439962.2022.2098891","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract This study aims to explore the variability of risk factors affecting injury severity in rear-end crashes when different struck vehicle groups are involved. Two types of rear-end crash data, vehicle-strike-car data, vehicle-strike-truck data, are extracted from the Fatality Analysis Reporting System (FARS). Two likelihood ratio (LR) tests are firstly performed to validate the struck vehicle group variations, and then two separate random thresholds random parameters hierarchical ordered probit (RRHOP) models (Model 1 and Model 2) are established to capture unobserved heterogeneity. The results of LR test show significant differences in the effects of factors included in each model. Moreover, the model results suggest that SUVs, vans, and large trucks as striking vehicles are significant related to injury severity in both models with different effects. Factors such as speeding related, pickup, model year (struck vehicle), disabled damage, adverse weather, speed limit (≥60 mile/h), and young driver (struck vehicle) are found to be statistically significant in only model 1. These results provide a better understanding of differences in contributing factors of rear-end crashes, which help to propose effective countermeasures to mitigate its injury severity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同撞击车辆组对追尾事故乘员伤害严重程度的影响因素分析:随机阈值随机参数分层有序概率模型
摘要本研究旨在探讨不同碰撞车辆组对追尾碰撞伤害严重程度影响因素的差异性。从死亡分析报告系统(FARS)中提取了两种类型的追尾事故数据,即车辆撞击汽车数据和车辆撞击卡车数据。首先进行两个似然比(LR)检验来验证被击中车辆组的差异,然后建立两个单独的随机阈值随机参数分层有序概率(rrrp)模型(模型1和模型2)来捕获未观察到的异质性。LR检验结果显示,各模型所含因素的影响有显著差异。此外,模型结果表明,suv、货车和大型卡车作为撞击车辆与两种车型的伤害严重程度显著相关,但影响不同。超速相关、皮卡、车型年份(被撞车辆)、残损、恶劣天气、限速(≥60英里/小时)、年轻驾驶员(被撞车辆)等因素仅在模型1中具有统计学意义。这些结果有助于更好地了解追尾事故成因的差异,有助于提出有效的对策来减轻其伤害程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.00
自引率
15.40%
发文量
38
期刊最新文献
Examining the crash risk factors associated with cycling by considering spatial and temporal disaggregation of exposure: Findings from four Dutch cities Traffic safety performance evaluation in a connected vehicle environment with queue warning and speed harmonization applications Enhancing bicyclist survival time in fatal crashes: Investigating the impact of faster crash notification time through explainable machine learning Factors affecting pedestrian injury severity in pedestrian-vehicle crashes: Insights from a data mining and mixed logit model approach Prediction of high-risk bus drivers characterized by aggressive driving behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1