R. Adzhri, M. Arshad, M. Fathil, U. Hashim, A. R. Ruslinda, R. M. Ayub, S. Gopinath, C. Voon, K. L. Foo, M. Nuzaihan, A. H. Azman, M. Zaki
{"title":"Reactive Ion etching of TiO2 thin film: The impact of different gaseous","authors":"R. Adzhri, M. Arshad, M. Fathil, U. Hashim, A. R. Ruslinda, R. M. Ayub, S. Gopinath, C. Voon, K. L. Foo, M. Nuzaihan, A. H. Azman, M. Zaki","doi":"10.1109/RSM.2015.7354999","DOIUrl":null,"url":null,"abstract":"Titanium dioxide (TiO<sub>2</sub>) is one of a metal oxide material group that shows a promising future in biosensors application. TiO<sub>2</sub> possess both physical and chemical resistant that can extend a device lifespan. However, etching of TiO<sub>2</sub> with very high selectivity is a challenging process in achieving good and desired profile particularly in nanometer scale. In this work, we present the anisotropic etch profile. Three types of ICP-RIE recipes are used i.e. CF<sub>4</sub>/O<sub>2</sub>, Ar/SF<sub>6</sub> and CF<sub>4</sub>/Ar. Prior to that, the TiO<sub>2</sub> sol-gel is deposited on top of SiO<sub>2</sub> layer. All the results are optically and physically characterized by using 3D-surface profilometer and atomic force microscopy (AFM) and finally followed by electrical characterization.","PeriodicalId":6667,"journal":{"name":"2015 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)","volume":"22 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSM.2015.7354999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Titanium dioxide (TiO2) is one of a metal oxide material group that shows a promising future in biosensors application. TiO2 possess both physical and chemical resistant that can extend a device lifespan. However, etching of TiO2 with very high selectivity is a challenging process in achieving good and desired profile particularly in nanometer scale. In this work, we present the anisotropic etch profile. Three types of ICP-RIE recipes are used i.e. CF4/O2, Ar/SF6 and CF4/Ar. Prior to that, the TiO2 sol-gel is deposited on top of SiO2 layer. All the results are optically and physically characterized by using 3D-surface profilometer and atomic force microscopy (AFM) and finally followed by electrical characterization.