Evaluation of body sensor network platforms: a design space and benchmarking analysis

S. Nabar, Ayan Banerjee, S. Gupta, R. Poovendran
{"title":"Evaluation of body sensor network platforms: a design space and benchmarking analysis","authors":"S. Nabar, Ayan Banerjee, S. Gupta, R. Poovendran","doi":"10.1145/1921081.1921096","DOIUrl":null,"url":null,"abstract":"Body Sensor Networks (BSNs) consist of sensor nodes deployed on the human body for health monitoring. Each sensor node is implemented by interfacing a physiological sensor with a sensor platform consisting of components such as microcontroller, radio and memory. Diverse needs of BSN applications require customized platform development for optimizing performance. In this paper, we propose a two-phase framework to evaluate the performance of sensor platforms to match a BSN's computation, communication and sensing requirements: 1) Design Space Determination, wherein we investigate salient features of BSN platforms and quantify them as design coordinates through evaluation metrics such as SPSW (Samples Processed per Second per Watt) and EPC (Expected Power Consumption). To measure these metrics for a platform under typical BSN application workloads, we propose BSN-Bench, a benchmarking suite composed of basic tasks that occur in diverse BSN applications. BSNBench enables an accurate profiling of platforms based on the design coordinates; 2) Design Space Exploration, wherein we explore the design space to find the most suitable platform for a given application. We demonstrate the usage of our framework through a case study, where we consider two practical BSN applications and choose suitable platforms for them.","PeriodicalId":91386,"journal":{"name":"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)","volume":"304 1","pages":"118-127"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1921081.1921096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Body Sensor Networks (BSNs) consist of sensor nodes deployed on the human body for health monitoring. Each sensor node is implemented by interfacing a physiological sensor with a sensor platform consisting of components such as microcontroller, radio and memory. Diverse needs of BSN applications require customized platform development for optimizing performance. In this paper, we propose a two-phase framework to evaluate the performance of sensor platforms to match a BSN's computation, communication and sensing requirements: 1) Design Space Determination, wherein we investigate salient features of BSN platforms and quantify them as design coordinates through evaluation metrics such as SPSW (Samples Processed per Second per Watt) and EPC (Expected Power Consumption). To measure these metrics for a platform under typical BSN application workloads, we propose BSN-Bench, a benchmarking suite composed of basic tasks that occur in diverse BSN applications. BSNBench enables an accurate profiling of platforms based on the design coordinates; 2) Design Space Exploration, wherein we explore the design space to find the most suitable platform for a given application. We demonstrate the usage of our framework through a case study, where we consider two practical BSN applications and choose suitable platforms for them.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人体传感器网络平台评估:设计空间与标杆分析
身体传感器网络(BSNs)由部署在人体上的传感器节点组成,用于健康监测。每个传感器节点通过将生理传感器与由微控制器、无线电和存储器等组件组成的传感器平台相连接来实现。BSN应用的多样化需求需要定制化的平台开发来优化性能。在本文中,我们提出了一个两阶段框架来评估传感器平台的性能,以满足BSN的计算、通信和传感要求:1)设计空间确定,其中我们研究了BSN平台的显著特征,并通过评估指标(如SPSW(每秒每瓦处理的样本)和EPC(预期功耗))将其量化为设计坐标。为了测量典型BSN应用程序工作负载下的平台的这些指标,我们提出了BSN- bench,这是一个基准测试套件,由各种BSN应用程序中的基本任务组成。BSNBench能够基于设计坐标对平台进行精确剖析;2)设计空间探索,我们探索设计空间,为给定的应用程序找到最合适的平台。我们通过一个案例研究来演示我们的框架的使用,其中我们考虑了两个实际的BSN应用程序,并为它们选择了合适的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Zero-Effort Camera-Assisted Calibration Techniques for Wearable Motion Sensors. Accurate energy expenditure estimation using smartphone sensors Remote patient monitoring: what impact can data analytics have on cost? PEES: physiology-based end-to-end security for mHealth AsthmaGuru: a framework to improve adherence to asthma medication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1