Model-Free Controller Designs for a Magnetic Micromanipulator

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Journal of Dynamic Systems Measurement and Control-Transactions of the Asme Pub Date : 2021-03-01 DOI:10.1115/1.4048489
G. Ablay
{"title":"Model-Free Controller Designs for a Magnetic Micromanipulator","authors":"G. Ablay","doi":"10.1115/1.4048489","DOIUrl":null,"url":null,"abstract":"\n An optimal model-free controller and a linear controller are designed and applied to a horizontal magnetic micromanipulator for controlling microparticles in a liquid environment. An input–output relation based model for the magnetic micromanipulator is obtained, verified, and used in the analysis of controllers. A model-free linear controller is designed using the offset current approach. An optimal nonlinear controller based on Karush–Kuhn–Tucker conditions is designed and then modified to produce smooth control signals. Experimental results are provided to show the efficiency and feasibility of the proposed controllers. The model-free controllers yield short settling time and zero steady-state error in the control of magnetic microparticles.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"12 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4048489","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

An optimal model-free controller and a linear controller are designed and applied to a horizontal magnetic micromanipulator for controlling microparticles in a liquid environment. An input–output relation based model for the magnetic micromanipulator is obtained, verified, and used in the analysis of controllers. A model-free linear controller is designed using the offset current approach. An optimal nonlinear controller based on Karush–Kuhn–Tucker conditions is designed and then modified to produce smooth control signals. Experimental results are provided to show the efficiency and feasibility of the proposed controllers. The model-free controllers yield short settling time and zero steady-state error in the control of magnetic microparticles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁性微机械臂的无模型控制器设计
设计了一种最优无模型控制器和线性控制器,并将其应用于卧式磁微机械臂中,用于液体环境下的微粒子控制。建立了基于输入输出关系的磁性微机械臂模型,并对其进行了验证,并将其应用于控制器的分析中。采用偏置电流法设计了无模型线性控制器。设计了一种基于Karush-Kuhn-Tucker条件的最优非线性控制器,并对其进行了改进,使其产生平滑的控制信号。实验结果表明了所提控制器的有效性和可行性。无模型控制器在磁性微粒控制中具有较短的稳定时间和零稳态误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
11.80%
发文量
79
审稿时长
24.0 months
期刊介绍: The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.
期刊最新文献
Spiking-Free Disturbance Observer-Based Sliding-Mode Control for Mismatched Uncertain System Current Imbalance in Dissimilar Parallel-Connected Batteries and the Fate of Degradation Convergence Self-Optimizing Vapor Compression Cycles Online With Bayesian Optimization Under Local Search Region Constraints Nonlinear Temperature Control of Additive Friction Stir Deposition Evaluated On an Echo State Network Closed-Loop Control and Plant Co-Design of a Hybrid Electric Unmanned Air Vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1