{"title":"Feature-preserving 3D fluorescence image sequence denoising","authors":"H. Bhujle","doi":"10.1145/3009977.3009983","DOIUrl":null,"url":null,"abstract":"In this paper feature-preserving denoising scheme for fluorescence video microscopy is presented. Fluorescence image sequences comprise of edges and fine structures with fast moving objects. Improving signal to noise ratio (SNR) while preserving structural details is a difficult task for these image sequences. Few existing denoising techniques result in over-smoothing these image sequences while others fail due to inappropriate implementation of motion estimation and compensation steps. In this paper we use nonlocal means (NLM) video denoising algorithm as to avoid motion estimation and compensation steps. The proposed shot boundary detection technique pre-processes the sequence systematically and accurately to form different shots with content-wise similar frames. To preserve the edges and fine structural details in the image sequences we modify the weighing term of NLM filter. Further, to accelerate the denoising process, separable non-local means filter is implemented for video sequences. We compare the results with existing fluorescence video de-noising techniques and show that the proposed method not only preserves the edges and small structural details more efficiently, also reduces the computational time. Efficacy of the proposed algorithm is evaluated quantitatively and qualitatively with PSNR and vision perception.","PeriodicalId":93806,"journal":{"name":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","volume":"23 1","pages":"45:1-45:8"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009977.3009983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper feature-preserving denoising scheme for fluorescence video microscopy is presented. Fluorescence image sequences comprise of edges and fine structures with fast moving objects. Improving signal to noise ratio (SNR) while preserving structural details is a difficult task for these image sequences. Few existing denoising techniques result in over-smoothing these image sequences while others fail due to inappropriate implementation of motion estimation and compensation steps. In this paper we use nonlocal means (NLM) video denoising algorithm as to avoid motion estimation and compensation steps. The proposed shot boundary detection technique pre-processes the sequence systematically and accurately to form different shots with content-wise similar frames. To preserve the edges and fine structural details in the image sequences we modify the weighing term of NLM filter. Further, to accelerate the denoising process, separable non-local means filter is implemented for video sequences. We compare the results with existing fluorescence video de-noising techniques and show that the proposed method not only preserves the edges and small structural details more efficiently, also reduces the computational time. Efficacy of the proposed algorithm is evaluated quantitatively and qualitatively with PSNR and vision perception.