Solid Concentration Effect for Solvent Extraction Process of Oily Contaminated Soil

L. Fitriyani, Edwan Karadena, Sukandar Sukandar
{"title":"Solid Concentration Effect for Solvent Extraction Process of Oily Contaminated Soil","authors":"L. Fitriyani, Edwan Karadena, Sukandar Sukandar","doi":"10.14710/REAKTOR.19.2.84-88","DOIUrl":null,"url":null,"abstract":"Solvent extraction has been used as a method to wash oil content of oily contaminated soil in industry for years. Some solvents and temperature ranges has been chosen to increase the oil recovery rate of extraction process, however only few studies reported that it has been able to reach remaining Total Petroleum Hydrocarbon (TPH) less than 0.5% in less than 30 minutes. During the experiments, acetone and toluene chosen to extract oil content from contaminated soil by using solvent extraction process. Temperature selected were between 24°C up to 70°C. Mixing apparatus which has been utilized was centrifugation machine with 1000 rpm (1570 g) operational speed. Duration of treatment process was 10 minutes with some variations of solid to solvent ratio. During the experiments, it was observed that by using toluene and acetone as solvents, the optimum Total Petroleum Hydrocarbon (TPH) removal obtained at temperature 50°C. In the other hand, optimum solid to solvent ratio toluene ratio was 1:6. As a solvent acetone observed capable to reduce TPH content until below 0.5% as threshold limit for TPH of contaminated soil regulated by environmental regulation in Indonesia. During the experiments it was also observed the dependency of solid concentration (Cs) with dissociation coefficient (KD). In the other hand, heavy metal at the remaining extracted soil after soil washing was observed available in safe concentration to be discharged to the environment base on regulation in Indonesia. Keywords: solvent extraction, soil washing, contaminated soil, TPH, centrifugation, oil sludge, acetone, toluene, solid treatment.","PeriodicalId":20874,"journal":{"name":"Reaktor","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaktor","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/REAKTOR.19.2.84-88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solvent extraction has been used as a method to wash oil content of oily contaminated soil in industry for years. Some solvents and temperature ranges has been chosen to increase the oil recovery rate of extraction process, however only few studies reported that it has been able to reach remaining Total Petroleum Hydrocarbon (TPH) less than 0.5% in less than 30 minutes. During the experiments, acetone and toluene chosen to extract oil content from contaminated soil by using solvent extraction process. Temperature selected were between 24°C up to 70°C. Mixing apparatus which has been utilized was centrifugation machine with 1000 rpm (1570 g) operational speed. Duration of treatment process was 10 minutes with some variations of solid to solvent ratio. During the experiments, it was observed that by using toluene and acetone as solvents, the optimum Total Petroleum Hydrocarbon (TPH) removal obtained at temperature 50°C. In the other hand, optimum solid to solvent ratio toluene ratio was 1:6. As a solvent acetone observed capable to reduce TPH content until below 0.5% as threshold limit for TPH of contaminated soil regulated by environmental regulation in Indonesia. During the experiments it was also observed the dependency of solid concentration (Cs) with dissociation coefficient (KD). In the other hand, heavy metal at the remaining extracted soil after soil washing was observed available in safe concentration to be discharged to the environment base on regulation in Indonesia. Keywords: solvent extraction, soil washing, contaminated soil, TPH, centrifugation, oil sludge, acetone, toluene, solid treatment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含油污染土壤溶剂萃取过程中固体浓度的影响
溶剂萃取法作为一种清洗含油污染土壤含油量的方法已在工业上应用多年。为了提高萃取过程的油收率,人们选择了一些溶剂和温度范围,但只有少数研究报道,它能够在30分钟内使剩余总石油烃(TPH)低于0.5%。实验中选择丙酮和甲苯溶剂萃取法提取污染土壤中的含油量。温度选择在24°C到70°C之间。所使用的混合设备为离心分离机,转速为1000转/分(1570克)。处理时间为10分钟,料溶剂比有所变化。实验中发现,以甲苯和丙酮为溶剂,在温度为50℃时,总石油烃(TPH)去除率最佳。另一方面,最佳固液比甲苯为1:6。丙酮作为溶剂,作为印尼环境法规规定的污染土壤TPH阈值,可将TPH含量降低至0.5%以下。实验中还观察到固体浓度(Cs)与解离系数(KD)的关系。另一方面,根据印度尼西亚的规定,在土壤洗涤后的剩余提取土壤中,观察到重金属在安全浓度下可以排放到环境中。关键词:溶剂萃取,土壤洗涤,污染土壤,TPH,离心,油泥,丙酮,甲苯,固体处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
15
审稿时长
2 weeks
期刊最新文献
The Effect of Drying on Anthocyanin Content and Antioxidant Activity in Red Cabbage and White Cabbage KINETICS OF ADSORPTION OF HEAVY METALS (IRON) FROM TEXTILE INDUSTRY WASTE USING CALCIUM CARBIDE RESIDUE AS ADSORBENT Lactic acid fermentation of banana peel using Lactobacillus plantarum : Effect of substrate concentration, inoculum concentration, and various nitrogen sources Edible Film Modification Based-on Mucuna Pruriens with Crosslink Method Incorporated with Gelatin, Sodium Alginate, and Green Tea Extract Self-Discharging and Corrosion Problems in Vanadium Redox Flow Battery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1