{"title":"Diagnostic Efficiency of Various Systems for Automatic Analysis of Radiographs in the Detection of Lung Nodule","authors":"U. Smolnikova, P. Gavrilov, P. Yаblonskiy","doi":"10.52560/2713-0118-2022-3-51-66","DOIUrl":null,"url":null,"abstract":"The purpose of the study was to compare the effectiveness of various artificial intelligence systems for detecting foci and rounded lesions in the lungs. For testing, we selected four software products based on convolutional neural networks, positioning themselves as a sensitive system for evaluating digital chest radiographs. An analytical validation method was used for clinical evaluation. For diagnostics, 3 data samples were formed with the identification of signs of diseases (sample 1–5150 radiographs, detection of pathological changes 3 %; sample 2–100 radiographs, detection of pathological changes 6 %; sample 3–300 radiographs, detection of the prevalence of pathological changes 50 %). None of the software products passed the AUC threshold of 0.811 on all three samples. In all three samples, all software products have high accuracy and high sensitivity in detecting round formations, which leads to rare cases of overdiagnosis and special cases of underdiagnosis. The use of digital X-ray image analysis systems based on artificial intelligence technologies is a promising direction for high-quality diagnostics, primarily when considering their young radiologists as an additional opinion.","PeriodicalId":51864,"journal":{"name":"Radiology Research and Practice","volume":"205 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology Research and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52560/2713-0118-2022-3-51-66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 1
Abstract
The purpose of the study was to compare the effectiveness of various artificial intelligence systems for detecting foci and rounded lesions in the lungs. For testing, we selected four software products based on convolutional neural networks, positioning themselves as a sensitive system for evaluating digital chest radiographs. An analytical validation method was used for clinical evaluation. For diagnostics, 3 data samples were formed with the identification of signs of diseases (sample 1–5150 radiographs, detection of pathological changes 3 %; sample 2–100 radiographs, detection of pathological changes 6 %; sample 3–300 radiographs, detection of the prevalence of pathological changes 50 %). None of the software products passed the AUC threshold of 0.811 on all three samples. In all three samples, all software products have high accuracy and high sensitivity in detecting round formations, which leads to rare cases of overdiagnosis and special cases of underdiagnosis. The use of digital X-ray image analysis systems based on artificial intelligence technologies is a promising direction for high-quality diagnostics, primarily when considering their young radiologists as an additional opinion.
期刊介绍:
Radiology Research and Practice is a peer-reviewed, Open Access journal that publishes articles on all areas of medical imaging. The journal promotes evidence-based radiology practice though the publication of original research, reviews, and clinical studies for a multidisciplinary audience. Radiology Research and Practice is archived in Portico, which provides permanent archiving for electronic scholarly journals, as well as via the LOCKSS initiative. It operates a fully open access publishing model which allows open global access to its published content. This model is supported through Article Processing Charges. For more information on Article Processing charges in gen