Penerapan Algoritma FP-Growth dalam Penentuan Pola Pembelian Konsumen pada Kain Tenun Medali Mas

Icca Astrina, M. Arifin, Utomo Pujianto
{"title":"Penerapan Algoritma FP-Growth dalam Penentuan Pola Pembelian Konsumen pada Kain Tenun Medali Mas","authors":"Icca Astrina, M. Arifin, Utomo Pujianto","doi":"10.31940/matrix.v9i1.1036","DOIUrl":null,"url":null,"abstract":"In Kediri City there is a very popular woven fabric shop called Medali Mas. It has high sales transaction activity resulting in a large stack of data purchases. This data stack is examined as an information pattern for consumer purchases using data mining association rule techniques and FP-Growth algorithms. The FP-Growth algorithm uses the concept of development tree in searching for frequent item sets. The data used are, 26 types of woven fabric items and 200 transaction data provided that 2 or 3 types of items in 1 transaction. Determined  minimum support value of 20 percent and  minimum confidence value of 10 percent. It also used Chi-Square testing to find out how much correlation between variables from the results of frequent itemsets that have been calculated. The final result of the consumer purchasing pattern is obtained (m to no) when buying Semi sutra Lusi = grey, Pakan = Blue Flowers, then the consumer might buy Sarong Lusi = black, Pakan= green Lurik and Cotton Lusi= yellow, Pakan = Tosca Bamboo with the results of the correlation between variables at 19.1397274913.","PeriodicalId":31964,"journal":{"name":"Matrix Jurnal Manajemen Teknologi dan Informatika","volume":"205 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Jurnal Manajemen Teknologi dan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31940/matrix.v9i1.1036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In Kediri City there is a very popular woven fabric shop called Medali Mas. It has high sales transaction activity resulting in a large stack of data purchases. This data stack is examined as an information pattern for consumer purchases using data mining association rule techniques and FP-Growth algorithms. The FP-Growth algorithm uses the concept of development tree in searching for frequent item sets. The data used are, 26 types of woven fabric items and 200 transaction data provided that 2 or 3 types of items in 1 transaction. Determined  minimum support value of 20 percent and  minimum confidence value of 10 percent. It also used Chi-Square testing to find out how much correlation between variables from the results of frequent itemsets that have been calculated. The final result of the consumer purchasing pattern is obtained (m to no) when buying Semi sutra Lusi = grey, Pakan = Blue Flowers, then the consumer might buy Sarong Lusi = black, Pakan= green Lurik and Cotton Lusi= yellow, Pakan = Tosca Bamboo with the results of the correlation between variables at 19.1397274913.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FP-Growth算法的应用,用于确定Mas批发织物上的消费者购买模式
在Kediri市有一家非常受欢迎的织物店,叫做Medali Mas。它有很高的销售交易活动,导致大量的数据购买。使用数据挖掘关联规则技术和FP-Growth算法,将该数据堆栈作为消费者购买的信息模式进行检查。FP-Growth算法使用发展树的概念来搜索频繁项集。所使用的数据为,26种机织物品和200笔交易数据,假设1笔交易中有2种或3种物品。确定的最小支持值为20%,最小置信度为10%。它还使用卡方检验,从已计算的频繁项目集的结果中找出变量之间的相关性有多大。当消费者购买Semi sutra Lusi=灰色,Pakan=蓝色花朵时,得到消费者购买模式的最终结果(m to no),那么消费者可能会购买Sarong Lusi=黑色,Pakan=绿色Lurik和Cotton Lusi=黄色,Pakan= Tosca Bamboo,变量间的相关结果为19.1397274913。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
13
审稿时长
24 weeks
期刊最新文献
Optimizing transaction data performance in database management systems Library apps to improve the digitization of Sekolah Penggerak Program Literature review: visible light communication system business model scheme for telecommunication business in Indonesia Determination of the best rule-based analysis results from the comparison of the Fp-Growth, Apriori, and TPQ-Apriori Algorithms for recommendation systems The empirical study of Joomla CMS map extension and location performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1