Bearing Thermal Conductance Measurement Test Method and Experimental Design

Y. R. Takeuchi, S. Davis, M. Eby, Jerome K. Fuller, D. L. Taylor, Michael J. Rosado
{"title":"Bearing Thermal Conductance Measurement Test Method and Experimental Design","authors":"Y. R. Takeuchi, S. Davis, M. Eby, Jerome K. Fuller, D. L. Taylor, Michael J. Rosado","doi":"10.1520/JAI104233","DOIUrl":null,"url":null,"abstract":"Bearings are used in a number of spacecraft applications, ranging from minimal motion devices, such as pointing mechanisms, to high-speed components, such as control moment gyroscopes and reaction and momentum wheels. Terrestrial applications include pumps, axles, and tooling. Heat-transfer modes for rotational systems in a vacuum environment differ from their terrestrial counterpart. In space, with the absence of air, heat transfer consists of radiation from the rotating system and conductance through the bearings themselves. Depending on the application, conductance could dominate the effects on bearing temperatures and thermal gradients. Accurate thermal predictions are important because they can drive life and performance requirements. To accurately predict bearing temperatures, basic bearing thermal conductance data was needed. However, bearing thermal conductance tends to be the most significant unknown in a rotational system in the space environment. To address this shortcoming, this paper explores a new vacuum test rig designed to measure bearing conductance under simulated operational conditions. Experimental variables include control of the bearing rotational speed, applied axial load, and average bearing temperature and temperature gradient via an applied heat source/heat sink mechanism. All tests are conducted in vacuum. The experimental variables studied herein allowed parametric studies to be conducted under controlled thermal and mechanical conditions, permitting the exploration of the influences of those operational variables on bearing thermal conductance. This paper will describe the test method, the use of uncertainty analysis to design the experiment, and a verification study.","PeriodicalId":15057,"journal":{"name":"Journal of Astm International","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astm International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/JAI104233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Bearings are used in a number of spacecraft applications, ranging from minimal motion devices, such as pointing mechanisms, to high-speed components, such as control moment gyroscopes and reaction and momentum wheels. Terrestrial applications include pumps, axles, and tooling. Heat-transfer modes for rotational systems in a vacuum environment differ from their terrestrial counterpart. In space, with the absence of air, heat transfer consists of radiation from the rotating system and conductance through the bearings themselves. Depending on the application, conductance could dominate the effects on bearing temperatures and thermal gradients. Accurate thermal predictions are important because they can drive life and performance requirements. To accurately predict bearing temperatures, basic bearing thermal conductance data was needed. However, bearing thermal conductance tends to be the most significant unknown in a rotational system in the space environment. To address this shortcoming, this paper explores a new vacuum test rig designed to measure bearing conductance under simulated operational conditions. Experimental variables include control of the bearing rotational speed, applied axial load, and average bearing temperature and temperature gradient via an applied heat source/heat sink mechanism. All tests are conducted in vacuum. The experimental variables studied herein allowed parametric studies to be conducted under controlled thermal and mechanical conditions, permitting the exploration of the influences of those operational variables on bearing thermal conductance. This paper will describe the test method, the use of uncertainty analysis to design the experiment, and a verification study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轴承热导测量试验方法及试验设计
轴承用于许多航天器应用,从最小的运动装置,如指向机构,到高速组件,如控制力矩陀螺仪和反应和动量轮。地面应用包括泵,轴和工具。真空环境中旋转系统的传热模式不同于它们的地面对应系统。在空间中,由于没有空气,传热由旋转系统的辐射和通过轴承本身的传导组成。根据不同的应用,电导可以主导轴承温度和热梯度的影响。准确的热预测非常重要,因为它可以驱动寿命和性能要求。为了准确预测轴承温度,需要基本的轴承热导率数据。然而,轴承热导率往往是空间环境中旋转系统中最重要的未知因素。为了解决这一问题,本文设计了一种新的真空试验台,用于在模拟工况下测量轴承的电导。实验变量包括通过应用热源/散热器机制控制轴承转速、施加轴向载荷、轴承平均温度和温度梯度。所有试验均在真空中进行。本文研究的实验变量允许在受控的热和机械条件下进行参数化研究,允许探索这些操作变量对轴承导热性的影响。本文将阐述试验方法,运用不确定度分析进行实验设计,并进行验证研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flame Retardant Emissions from Spray Polyurethane Foam Insulation Economic Impact of Improved Service-Life Prediction for Seams in Low-Slope EPDM Roofing The Economics of Residential Fire Sprinklers and the Potential Impact of Recent Code Changes Roller Profile Development for an Axially Loaded, Single Row Spherical Roller Bearing in an Oscillating Application Characterization of Adhesive Joints for Hybrid Steel-Glass Beams by Means of Simplified Small Scale Tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1