A. Khandelwal, A. Bhargava, Ajay Sharma, Harish Sharma
{"title":"Transmission network expansion planning using state-of-art nature inspired algorithms: a survey","authors":"A. Khandelwal, A. Bhargava, Ajay Sharma, Harish Sharma","doi":"10.1504/IJSI.2019.10018603","DOIUrl":null,"url":null,"abstract":"Transmission network expansion planning (TNEP) problem has been continuously solved for many years still the cost effective, reliable, and optimise solution is always desirable. The TNEP has been solved by various conventional and non conventional strategies. The strategy to find the solution of TNEP by classical mathematical optimisation techniques is tedious, slow and inefficient. In recent years, nature inspired algorithms (NIAs) have proven their importance to provide the solutions of the TNEP problem over classical mathematical optimisation techniques. This paper presents a review on the key contributions of the state-of-art NIAs to solve the TNEP problem. Further, the TNEP system specific significant works presented in the literature are summarised for easy understanding of the readers. The readers can get a brief description of the considered NIAs algorithms which has been applied to solve various systems of TNEP problem and they can also identify the significant NIA which is being applied for specific TNEP system.","PeriodicalId":44265,"journal":{"name":"International Journal of Swarm Intelligence Research","volume":"41 1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Swarm Intelligence Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSI.2019.10018603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4
Abstract
Transmission network expansion planning (TNEP) problem has been continuously solved for many years still the cost effective, reliable, and optimise solution is always desirable. The TNEP has been solved by various conventional and non conventional strategies. The strategy to find the solution of TNEP by classical mathematical optimisation techniques is tedious, slow and inefficient. In recent years, nature inspired algorithms (NIAs) have proven their importance to provide the solutions of the TNEP problem over classical mathematical optimisation techniques. This paper presents a review on the key contributions of the state-of-art NIAs to solve the TNEP problem. Further, the TNEP system specific significant works presented in the literature are summarised for easy understanding of the readers. The readers can get a brief description of the considered NIAs algorithms which has been applied to solve various systems of TNEP problem and they can also identify the significant NIA which is being applied for specific TNEP system.
期刊介绍:
The mission of the International Journal of Swarm Intelligence Research (IJSIR) is to become a leading international and well-referred journal in swarm intelligence, nature-inspired optimization algorithms, and their applications. This journal publishes original and previously unpublished articles including research papers, survey papers, and application papers, to serve as a platform for facilitating and enhancing the information shared among researchers in swarm intelligence research areas ranging from algorithm developments to real-world applications.