Personalized location models with adaptive mixtures

Moshe Lichman, Dimitrios Kotzias, Padhraic Smyth
{"title":"Personalized location models with adaptive mixtures","authors":"Moshe Lichman, Dimitrios Kotzias, Padhraic Smyth","doi":"10.1145/2996913.2996953","DOIUrl":null,"url":null,"abstract":"Personalization is increasingly important for a range of applications that rely on location-based modeling. A key aspect in building personalized models is using population-level information to smooth noisy sparse data at the individual level. In this paper we develop a general mixture model framework for learning individual-level location models where the model adaptively combines different types of smoothing information. In a series of experiments with Twitter geolocation data and Gowalla check-in data we demonstrate that the proposed approach can be significantly more accurate than more traditional smoothing and matrix factorization techniques. The improvement in performance over matrix factorization is pronounced and may be explained by the tendency of dimensionality reduction methods to over-smooth and not retain enough detail at the individual level.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Personalization is increasingly important for a range of applications that rely on location-based modeling. A key aspect in building personalized models is using population-level information to smooth noisy sparse data at the individual level. In this paper we develop a general mixture model framework for learning individual-level location models where the model adaptively combines different types of smoothing information. In a series of experiments with Twitter geolocation data and Gowalla check-in data we demonstrate that the proposed approach can be significantly more accurate than more traditional smoothing and matrix factorization techniques. The improvement in performance over matrix factorization is pronounced and may be explained by the tendency of dimensionality reduction methods to over-smooth and not retain enough detail at the individual level.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有自适应混合的个性化位置模型
对于依赖于基于位置的建模的一系列应用程序来说,个性化变得越来越重要。建立个性化模型的一个关键方面是使用种群级信息来平滑个体级的噪声稀疏数据。在本文中,我们开发了一个通用的混合模型框架,用于学习个人层面的位置模型,该模型自适应地组合了不同类型的平滑信息。在Twitter地理位置数据和Gowalla签到数据的一系列实验中,我们证明了所提出的方法比传统的平滑和矩阵分解技术要准确得多。与矩阵分解相比,性能的提高是明显的,这可能是由于降维方法倾向于过于平滑,而在个体层面上没有保留足够的细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Location corroborations by mobile devices without traces Knowledge-based trajectory completion from sparse GPS samples Particle filter for real-time human mobility prediction following unprecedented disaster Pyspatiotemporalgeom: a python library for spatiotemporal types and operations Fast transportation network traversal with hyperedges: (industrial paper)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1