Facial Expression Identification using Regularized Supervised Distance Preserving Projection

S. Jahan, Moriyam Akter, Sifta Yeasmin, Farhana Ahmed Simi
{"title":"Facial Expression Identification using Regularized Supervised Distance Preserving Projection","authors":"S. Jahan, Moriyam Akter, Sifta Yeasmin, Farhana Ahmed Simi","doi":"10.3329/dujs.v69i2.56485","DOIUrl":null,"url":null,"abstract":"Facial expression recognition is one of the most reliable and a key technology of advanced human-computer interaction with the rapid development of computer vision and artificial intelligence. Nowadays, there has been a growing interest in improving expression recognition techniques. In most of the cases, automatic recognition system’s efficiency depends on the represented facial expression feature. Even the best classifier may fail to achieve a good recognition rate if inadequate features are provided. Therefore, feature extraction is a crucial step of the facial expression recognition process. In this paper, we have used Regularized Supervised Distance Preserving Projection for extracting the best features of the images. Numerical experiment shows that the use of this technique outperforms many of state of art approaches in terms of recognition rate.\nDhaka Univ. J. Sci. 69(2): 70-75, 2021 (July)","PeriodicalId":11280,"journal":{"name":"Dhaka University Journal of Science","volume":"18 12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dhaka University Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/dujs.v69i2.56485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Facial expression recognition is one of the most reliable and a key technology of advanced human-computer interaction with the rapid development of computer vision and artificial intelligence. Nowadays, there has been a growing interest in improving expression recognition techniques. In most of the cases, automatic recognition system’s efficiency depends on the represented facial expression feature. Even the best classifier may fail to achieve a good recognition rate if inadequate features are provided. Therefore, feature extraction is a crucial step of the facial expression recognition process. In this paper, we have used Regularized Supervised Distance Preserving Projection for extracting the best features of the images. Numerical experiment shows that the use of this technique outperforms many of state of art approaches in terms of recognition rate. Dhaka Univ. J. Sci. 69(2): 70-75, 2021 (July)
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于正则化监督距离保持投影的面部表情识别
随着计算机视觉和人工智能的迅速发展,面部表情识别是先进人机交互技术中最可靠的关键技术之一。目前,人们对改进表情识别技术的兴趣越来越大。在大多数情况下,自动识别系统的效率取决于所代表的面部表情特征。如果提供的特征不充分,即使是最好的分类器也可能无法达到良好的识别率。因此,特征提取是人脸表情识别过程中至关重要的一步。在本文中,我们使用正则化监督距离保持投影来提取图像的最佳特征。数值实验表明,该方法在识别率方面优于许多现有方法。达卡大学学报(自然科学版),69(2):70-75,2021 (7)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Covid-19 Pandemic and Pre-pandemic Economic Shocks to Brazil, India, and Mexico: A Forecast Comparison Evaluating the Impact and Recovery New Traveling Wave Solutions to the Simplified Modified Camassa–Holm Equation and the Landau-Ginsburg-Higgs Equation Phytochemical Investigation and Biological Studies of Coffea benghalensis B. Heyne Ex Schult Synthesis and Characterization of Vanadium Doped Hexagonal Rubidium Tungsten Bronze Preparation and Characterization of Porous Carbon Material from Banana Pseudo-Stem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1