Effect of planting and irrigation management strategies on growth, yield and water productivity of indica rice in Iran

IF 4.3 Q2 Environmental Science Journal of Water Supply Research and Technology-aqua Pub Date : 2023-08-10 DOI:10.2166/ws.2023.203
Davood Akbari Nodehi, Mahsa Rahimi Pool, Davod Akbari Nodehi, R. Asadi, A. Bagheri, Fazl Shirdel Shahmiri
{"title":"Effect of planting and irrigation management strategies on growth, yield and water productivity of indica rice in Iran","authors":"Davood Akbari Nodehi, Mahsa Rahimi Pool, Davod Akbari Nodehi, R. Asadi, A. Bagheri, Fazl Shirdel Shahmiri","doi":"10.2166/ws.2023.203","DOIUrl":null,"url":null,"abstract":"\n \n The present study aimed to evaluate the effects of different planting and irrigation management strategies on growth, yield and water productivity in rice. The experiment was arranged as a split-plot in a randomized complete block design with three replications. The experimental treatments included the main plot assigned to three planting methods (transplanting at puddled bed [TPB], transplanting at non-puddled bed [TNPB], and direct-seeded rice [DSR]) and the sub-plot assigned to three irrigation systems (continuous flooding irrigation (CFI), alternate wetting and drying [AWD], and drip irrigation [DI]). The results showed that plants at TPB produced highest yield (3,962.7 kg·ha–1), whereas yield was reduced by 20% and 27.2% at TNPB and DSR, respectively. The DSR practice resulted in the highest total water input (TWI) (8,682.4 m3·ha–1), whereas TPB treatment allowed a 17.3% depletion of TWI and a 39.3% enhancment of total water productivity compared with DSR. The plants grown under CFI and AWD treatments indicated 8.9% and 7.6% higher yield compared with DI-treated plants, whereas DI system showed higher water-saving capacity compared with AWD and CFI. Our results highlight that combined application of AWD system and TPB method has a great potential to reduce TWI without negatively affecting yield.","PeriodicalId":17553,"journal":{"name":"Journal of Water Supply Research and Technology-aqua","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply Research and Technology-aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2023.203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

The present study aimed to evaluate the effects of different planting and irrigation management strategies on growth, yield and water productivity in rice. The experiment was arranged as a split-plot in a randomized complete block design with three replications. The experimental treatments included the main plot assigned to three planting methods (transplanting at puddled bed [TPB], transplanting at non-puddled bed [TNPB], and direct-seeded rice [DSR]) and the sub-plot assigned to three irrigation systems (continuous flooding irrigation (CFI), alternate wetting and drying [AWD], and drip irrigation [DI]). The results showed that plants at TPB produced highest yield (3,962.7 kg·ha–1), whereas yield was reduced by 20% and 27.2% at TNPB and DSR, respectively. The DSR practice resulted in the highest total water input (TWI) (8,682.4 m3·ha–1), whereas TPB treatment allowed a 17.3% depletion of TWI and a 39.3% enhancment of total water productivity compared with DSR. The plants grown under CFI and AWD treatments indicated 8.9% and 7.6% higher yield compared with DI-treated plants, whereas DI system showed higher water-saving capacity compared with AWD and CFI. Our results highlight that combined application of AWD system and TPB method has a great potential to reduce TWI without negatively affecting yield.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
种植和灌溉管理策略对伊朗籼稻生长、产量和水分生产力的影响
本研究旨在评价不同种植和灌溉管理策略对水稻生长、产量和水分生产力的影响。试验采用完全随机区组设计,分为3个重复。试验处理包括主区采用3种种植方式(水坑畦移栽[TPB]、非水坑畦移栽[TNPB]和水稻直播[DSR]),副区采用3种灌溉方式(连续漫灌(CFI)、干湿交替灌溉(AWD)和滴灌[DI])。结果表明:TPB处理产量最高(3962.7 kg·ha-1), TNPB和DSR处理产量分别降低20%和27.2%;DSR处理导致最高的总水输入(TWI) (8,682.4 m3·ha-1),而TPB处理与DSR相比,TWI减少了17.3%,总水生产力提高了39.3%。CFI和AWD处理的产量分别比直接处理高8.9%和7.6%,而DI系统的节水能力比AWD和CFI高。结果表明,在不影响产量的情况下,AWD系统与TPB方法联合应用具有很大的降低TWI的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
74
审稿时长
4.5 months
期刊介绍: Journal of Water Supply: Research and Technology - Aqua publishes peer-reviewed scientific & technical, review, and practical/ operational papers dealing with research and development in water supply technology and management, including economics, training and public relations on a national and international level.
期刊最新文献
Incorporating economy and water demand rate uncertainty into decision-making for agricultural water allocation during droughts Development of water resources protection planning and environmental design in urban water conservancy landscape based on ecological concept Application of water resource economic management model in agricultural structure adjustment A synoptic assessment of groundwater quality in high water-demand regions of coastal Andhra Pradesh, India Many-objective optimisation tool for the design of district metered areas in pumped water distribution networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1