{"title":"Error-Bounded Air Quality Mapping Using Wireless Sensor Networks","authors":"Ahmed Boubrima, Walid Bechkit, H. Rivano","doi":"10.1109/LCN.2016.66","DOIUrl":null,"url":null,"abstract":"Monitoring air quality has become a major challenge of modern cities where the majority of population lives. In this paper, we focus on using wireless sensor networks for air pollution mapping. We tackle the optimization problem of sensor deployment and propose two placement models allowing to minimize the deployment cost and ensure an error-bounded air pollution mapping. Our models take into account the sensing drift of sensor nodes and the impact of weather conditions. Unlike most of existing deployment models, which assume that sensors have a given detection range, we base on interpolation methods to place sensors in such a way that pollution concentration is estimated with a bounded error at locations where no sensor is deployed. We evaluate our model on a dataset of the Lyon City and give insights on how to establish a good compromise between the deployment budget and the precision of air quality monitoring. We also compare our model to generic approaches and show that our formulation is at least 3 times better than random and uniform deployment.","PeriodicalId":6864,"journal":{"name":"2016 IEEE 41st Conference on Local Computer Networks (LCN)","volume":"11 1","pages":"380-388"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 41st Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN.2016.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Monitoring air quality has become a major challenge of modern cities where the majority of population lives. In this paper, we focus on using wireless sensor networks for air pollution mapping. We tackle the optimization problem of sensor deployment and propose two placement models allowing to minimize the deployment cost and ensure an error-bounded air pollution mapping. Our models take into account the sensing drift of sensor nodes and the impact of weather conditions. Unlike most of existing deployment models, which assume that sensors have a given detection range, we base on interpolation methods to place sensors in such a way that pollution concentration is estimated with a bounded error at locations where no sensor is deployed. We evaluate our model on a dataset of the Lyon City and give insights on how to establish a good compromise between the deployment budget and the precision of air quality monitoring. We also compare our model to generic approaches and show that our formulation is at least 3 times better than random and uniform deployment.