Preparation, Characterization, and Optimization of Ionic Gelated Nanoparticles Dried Extract of Temulawak Rhizome (Curcuma xanthorrhiza R.) using a Factorial Design 22

M. Arifin, Y. Noviani, Safira Nafisa, Agisha Sheilabel
{"title":"Preparation, Characterization, and Optimization of Ionic Gelated Nanoparticles Dried Extract of Temulawak Rhizome (Curcuma xanthorrhiza R.) using a Factorial Design 22","authors":"M. Arifin, Y. Noviani, Safira Nafisa, Agisha Sheilabel","doi":"10.35814/jifi.v20i2.1307","DOIUrl":null,"url":null,"abstract":"Temulawak rhizome (Curcuma xanthorrhiza R.) is efficacious as antidiabetic because it has curcuminoid compounds. The aim of the research was to make, characterize, and optimize the nanoparticle formula of dried temulawak rhizome extract. The rhizomes were macerated using 96% ethanol. The curcuminoid content of the thick extract was determined using a spectrophotometer and dried extract using a spray dryer. The dried extract was formulated into nanosuspension using ionic gelation method by mixing a concentration of 0.1–0.5% dried extract with a mixture of 0.2% chitosan and 0.1% sodium tripolyphosphate in a 2:1–5:1 ratio. Characterization was carried out including: particle morphology, particle size, polydispersity index, zeta potential, and entrapment efficiency. Response data were analyzed by factorial 22 design using Minitab18 software to determine the optimum formula. The concentration of curcuminoids in the thick extract was 15.96%. The morphology of the nanosuspension was spherical, with a particle size of 114.7–399.3 nm, a polydispersity index of 0.429–0.597, a zeta potential of 35.1–48.6 mV, and an entrapment efficiency of 61.08–73.37%. The optimum formula was obtained with a composition of 0.44% extract and chitosan: Na-TPP (2:1) with a desirability value, d= 0.8984. It can be concluded that the factorial design of 22 can be used to determine the optimum formula for dried extract of temulawak rhizome using the ionic gelation method.","PeriodicalId":17684,"journal":{"name":"JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35814/jifi.v20i2.1307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Temulawak rhizome (Curcuma xanthorrhiza R.) is efficacious as antidiabetic because it has curcuminoid compounds. The aim of the research was to make, characterize, and optimize the nanoparticle formula of dried temulawak rhizome extract. The rhizomes were macerated using 96% ethanol. The curcuminoid content of the thick extract was determined using a spectrophotometer and dried extract using a spray dryer. The dried extract was formulated into nanosuspension using ionic gelation method by mixing a concentration of 0.1–0.5% dried extract with a mixture of 0.2% chitosan and 0.1% sodium tripolyphosphate in a 2:1–5:1 ratio. Characterization was carried out including: particle morphology, particle size, polydispersity index, zeta potential, and entrapment efficiency. Response data were analyzed by factorial 22 design using Minitab18 software to determine the optimum formula. The concentration of curcuminoids in the thick extract was 15.96%. The morphology of the nanosuspension was spherical, with a particle size of 114.7–399.3 nm, a polydispersity index of 0.429–0.597, a zeta potential of 35.1–48.6 mV, and an entrapment efficiency of 61.08–73.37%. The optimum formula was obtained with a composition of 0.44% extract and chitosan: Na-TPP (2:1) with a desirability value, d= 0.8984. It can be concluded that the factorial design of 22 can be used to determine the optimum formula for dried extract of temulawak rhizome using the ionic gelation method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
姜黄根离子凝胶纳米颗粒干燥提取物的制备、表征及优化研究[j]
莪术根茎(Curcuma xanthorrhiza R.)含有姜黄素类化合物,具有有效的抗糖尿病作用。本研究的目的是制备、表征和优化干田竹根茎提取物的纳米颗粒配方。用96%乙醇浸泡根茎。用分光光度计测定浓稠提取物的姜黄素含量,用喷雾干燥机干燥提取物。将干燥提取液以0.1-0.5%的浓度与0.2%壳聚糖和0.1%三聚磷酸钠的混合物以2:1-5:1的比例混合,采用离子凝胶法制备纳米混悬液。表征包括:颗粒形态、粒径、多分散性指数、zeta电位和包埋效率。采用Minitab18软件对反应数据进行因子22设计分析,确定最佳配方。粗提物中姜黄素含量为15.96%。纳米悬浮液形貌为球形,粒径为114.7 ~ 399.3 nm,多分散性指数0.429 ~ 0.597,zeta电位35.1 ~ 48.6 mV,包封效率61.08 ~ 73.37%。以壳聚糖:Na-TPP(2:1)的比例为0.44%为最佳配比,优选值为d= 0.8984。结果表明,22的析因设计可用于离子胶凝法确定田竹根茎干燥浸出物的最佳配方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
26
审稿时长
12 weeks
期刊最新文献
Characterization of microencapsulated Saga Leaves Extract (Abrus precatorius L.) and Analgetic Activity Tests in Male Mice (Mus musculus) Formulation and Characterization of Instant Powder Combination of Ginger, Bangle, and Lemon Extract as an Antioxidant Analysis of Molecular Docking and Dynamics Simulation of Mahogany (Swietenia macrophylla King) Compounds Against the PLpro Enzyme SARS-COV-2 The Development and Validation of The Indonesian Insulin Adherence Influence Factor Questionnaire (IIAIFQ) Effect of CaCl2 Crosslinker Concentration On The Characteristics, Release and Stability of Ciprofloxacin HCl-Alginate-Carrageenan Microspheres
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1