A Combination of BB84 Quantum Key Distribution and An Improved Scheme of NTRU Post-Quantum Cryptosystem

El Hassane Laaji, A. Azizi
{"title":"A Combination of BB84 Quantum Key Distribution and An Improved Scheme of NTRU Post-Quantum Cryptosystem","authors":"El Hassane Laaji, A. Azizi","doi":"10.13052/jcsm2245-1439.1152","DOIUrl":null,"url":null,"abstract":"The BB84 quantum key distribution (QKD) protocol is based on the no-cloning quantum physic property, so if an attacker measures a photon state, he disturbs that state. This protocol uses two channels: (1) A quantum channel for sending the quantum information (photons polarized). (2) And a classical channel for exchanging the polarization and the measurement information (base sets or filters). The BB84 supposes that the classical channel is secure, but it is not always right, because it depends on the methods used during the communication over this channel. If an eavesdropper gets the sender or the receiver filters or both of them, he can leak some or all bits of the constructed key. In this context, we contribute by creating a protocol that combines the BB84 protocol with an improved scheme of NTRU post-quantum cryptosystem, which will secure the transmitted information over the classical channel. NTRU is a structured lattice scheme, and it is based on the hardness to solve lattice problems in Rn. Actually, it is one of the most important candidates for the NIST post-quantum standardization project.","PeriodicalId":37820,"journal":{"name":"Journal of Cyber Security and Mobility","volume":"1 1","pages":"673-694"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cyber Security and Mobility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jcsm2245-1439.1152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

The BB84 quantum key distribution (QKD) protocol is based on the no-cloning quantum physic property, so if an attacker measures a photon state, he disturbs that state. This protocol uses two channels: (1) A quantum channel for sending the quantum information (photons polarized). (2) And a classical channel for exchanging the polarization and the measurement information (base sets or filters). The BB84 supposes that the classical channel is secure, but it is not always right, because it depends on the methods used during the communication over this channel. If an eavesdropper gets the sender or the receiver filters or both of them, he can leak some or all bits of the constructed key. In this context, we contribute by creating a protocol that combines the BB84 protocol with an improved scheme of NTRU post-quantum cryptosystem, which will secure the transmitted information over the classical channel. NTRU is a structured lattice scheme, and it is based on the hardness to solve lattice problems in Rn. Actually, it is one of the most important candidates for the NIST post-quantum standardization project.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BB84量子密钥分配与NTRU后量子密码系统改进方案的组合
BB84量子密钥分发(QKD)协议基于不可克隆量子物理特性,因此如果攻击者测量光子状态,他就会干扰该状态。该协议使用两个通道:(1)一个量子通道用于发送量子信息(光子偏振)。(2)交换偏振和测量信息(基组或滤波器)的经典通道。BB84假定经典信道是安全的,但它并不总是正确的,因为它取决于在该信道上通信期间使用的方法。如果窃听者得到了发送方或接收方的过滤器,或者两者都得到了,他就可以泄露构造密钥的部分或全部位。在这种情况下,我们通过创建一个将BB84协议与改进的NTRU后量子密码系统方案相结合的协议来做出贡献,该协议将确保在经典信道上传输的信息的安全性。NTRU是一种结构化的点阵格式,它是基于硬度来求解Rn中的点阵问题。实际上,它是NIST后量子标准化项目最重要的候选项目之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cyber Security and Mobility
Journal of Cyber Security and Mobility Computer Science-Computer Networks and Communications
CiteScore
2.30
自引率
0.00%
发文量
10
期刊介绍: Journal of Cyber Security and Mobility is an international, open-access, peer reviewed journal publishing original research, review/survey, and tutorial papers on all cyber security fields including information, computer & network security, cryptography, digital forensics etc. but also interdisciplinary articles that cover privacy, ethical, legal, economical aspects of cyber security or emerging solutions drawn from other branches of science, for example, nature-inspired. The journal aims at becoming an international source of innovation and an essential reading for IT security professionals around the world by providing an in-depth and holistic view on all security spectrum and solutions ranging from practical to theoretical. Its goal is to bring together researchers and practitioners dealing with the diverse fields of cybersecurity and to cover topics that are equally valuable for professionals as well as for those new in the field from all sectors industry, commerce and academia. This journal covers diverse security issues in cyber space and solutions thereof. As cyber space has moved towards the wireless/mobile world, issues in wireless/mobile communications and those involving mobility aspects will also be published.
期刊最新文献
Network Malware Detection Using Deep Learning Network Analysis An Efficient Intrusion Detection and Prevention System for DDOS Attack in WSN Using SS-LSACNN and TCSLR Update Algorithm of Secure Computer Database Based on Deep Belief Network Malware Cyber Threat Intelligence System for Internet of Things (IoT) Using Machine Learning Deep Learning Based Hybrid Analysis of Malware Detection and Classification: A Recent Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1