{"title":"A Combination of BB84 Quantum Key Distribution and An Improved Scheme of NTRU Post-Quantum Cryptosystem","authors":"El Hassane Laaji, A. Azizi","doi":"10.13052/jcsm2245-1439.1152","DOIUrl":null,"url":null,"abstract":"The BB84 quantum key distribution (QKD) protocol is based on the no-cloning quantum physic property, so if an attacker measures a photon state, he disturbs that state. This protocol uses two channels: (1) A quantum channel for sending the quantum information (photons polarized). (2) And a classical channel for exchanging the polarization and the measurement information (base sets or filters). The BB84 supposes that the classical channel is secure, but it is not always right, because it depends on the methods used during the communication over this channel. If an eavesdropper gets the sender or the receiver filters or both of them, he can leak some or all bits of the constructed key. In this context, we contribute by creating a protocol that combines the BB84 protocol with an improved scheme of NTRU post-quantum cryptosystem, which will secure the transmitted information over the classical channel. NTRU is a structured lattice scheme, and it is based on the hardness to solve lattice problems in Rn. Actually, it is one of the most important candidates for the NIST post-quantum standardization project.","PeriodicalId":37820,"journal":{"name":"Journal of Cyber Security and Mobility","volume":"1 1","pages":"673-694"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cyber Security and Mobility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jcsm2245-1439.1152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
The BB84 quantum key distribution (QKD) protocol is based on the no-cloning quantum physic property, so if an attacker measures a photon state, he disturbs that state. This protocol uses two channels: (1) A quantum channel for sending the quantum information (photons polarized). (2) And a classical channel for exchanging the polarization and the measurement information (base sets or filters). The BB84 supposes that the classical channel is secure, but it is not always right, because it depends on the methods used during the communication over this channel. If an eavesdropper gets the sender or the receiver filters or both of them, he can leak some or all bits of the constructed key. In this context, we contribute by creating a protocol that combines the BB84 protocol with an improved scheme of NTRU post-quantum cryptosystem, which will secure the transmitted information over the classical channel. NTRU is a structured lattice scheme, and it is based on the hardness to solve lattice problems in Rn. Actually, it is one of the most important candidates for the NIST post-quantum standardization project.
期刊介绍:
Journal of Cyber Security and Mobility is an international, open-access, peer reviewed journal publishing original research, review/survey, and tutorial papers on all cyber security fields including information, computer & network security, cryptography, digital forensics etc. but also interdisciplinary articles that cover privacy, ethical, legal, economical aspects of cyber security or emerging solutions drawn from other branches of science, for example, nature-inspired. The journal aims at becoming an international source of innovation and an essential reading for IT security professionals around the world by providing an in-depth and holistic view on all security spectrum and solutions ranging from practical to theoretical. Its goal is to bring together researchers and practitioners dealing with the diverse fields of cybersecurity and to cover topics that are equally valuable for professionals as well as for those new in the field from all sectors industry, commerce and academia. This journal covers diverse security issues in cyber space and solutions thereof. As cyber space has moved towards the wireless/mobile world, issues in wireless/mobile communications and those involving mobility aspects will also be published.