“Oh! I am so sorry!”: Understanding User Physiological Variation while Spoiling a Game Task

Roxana Agrigoroaie, Arturo Cruz-Maya, A. Tapus
{"title":"“Oh! I am so sorry!”: Understanding User Physiological Variation while Spoiling a Game Task","authors":"Roxana Agrigoroaie, Arturo Cruz-Maya, A. Tapus","doi":"10.1109/IROS.2018.8593395","DOIUrl":null,"url":null,"abstract":"This paper investigates how individuals react in a situation when an experimenter (human or robot) either tells them to stop in the middle of playing the Jenga game, or accidentally bumps into a table and makes the tower fall down. The mood of the participants and different physiological parameters (i.e., galvanic skin response (GSR) and facial temperature variation) are extracted and analysed based on the condition, experimenter, and psychological questionnaires (i.e., TEQ, TEIQ, RST-PQ). This study was a between participants study with 23 participants. Our results show that multiple GSR parameters (e.g., latency, amplitude, number of peaks) differ significantly based on the condition and the experimenter the participants interacted with. The temperature variation in three regions of interest (i.e., forehead, left, and right periorbital regions) are good indicators of how ready an individual is to react in an unforeseen situation.","PeriodicalId":6640,"journal":{"name":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"1 1","pages":"313-319"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2018.8593395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper investigates how individuals react in a situation when an experimenter (human or robot) either tells them to stop in the middle of playing the Jenga game, or accidentally bumps into a table and makes the tower fall down. The mood of the participants and different physiological parameters (i.e., galvanic skin response (GSR) and facial temperature variation) are extracted and analysed based on the condition, experimenter, and psychological questionnaires (i.e., TEQ, TEIQ, RST-PQ). This study was a between participants study with 23 participants. Our results show that multiple GSR parameters (e.g., latency, amplitude, number of peaks) differ significantly based on the condition and the experimenter the participants interacted with. The temperature variation in three regions of interest (i.e., forehead, left, and right periorbital regions) are good indicators of how ready an individual is to react in an unforeseen situation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
“哦!我很抱歉!:在破坏游戏任务的同时理解用户的生理变化
这篇论文调查了当实验者(人类或机器人)告诉他们在玩层层叠游戏的过程中停下来,或者不小心撞到桌子使塔倒下来时,个体是如何反应的。基于条件、实验者和心理问卷(TEQ、TEIQ、RST-PQ),提取和分析被试的情绪和皮肤电反应(GSR)、面部温度变化等生理参数。这项研究是23名参与者之间的研究。实验结果表明,在不同的条件和不同的实验对象之间,GSR的多个参数(如潜伏期、振幅、峰数)存在显著差异。在三个感兴趣的区域(即前额、左、右眼眶周围区域)的温度变化很好地指示了一个人在不可预见的情况下的反应准备程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On-Chip Virtual Vortex Gear and Its Application Classification of Hanging Garments Using Learned Features Extracted from 3D Point Clouds Deep Sequential Models for Sampling-Based Planning An Adjustable Force Sensitive Sensor with an Electromagnet for a Soft, Distributed, Digital 3-axis Skin Sensor Sliding-Layer Laminates: A Robotic Material Enabling Robust and Adaptable Undulatory Locomotion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1