Shape and texture based classification of citrus using principal component analysis

N. Akhtar, M. Idrees, Furqan ur Rehman, M. Ilyas, Qaiser Abbas, M. Luqman
{"title":"Shape and texture based classification of citrus using principal component analysis","authors":"N. Akhtar, M. Idrees, Furqan ur Rehman, M. Ilyas, Qaiser Abbas, M. Luqman","doi":"10.33687/IJAE.009.02.2525","DOIUrl":null,"url":null,"abstract":"Citrus family consists of a variety of eatable, consumable and usable items with varying nutritional contents. Naked eye citrus classification needs expert human effort, which provides poor decision reliability. The unreliable classification decision may be extremely hazardous when the citrus is being classified for exports or usage in pharmacy products and various food items. In this paper, citrus fruit has been classified on shape and texture features. Principal Component Analysis (PCA) was used as a methodology to explore statistical findings. The average accuracy of the system proposed is 84%. This system can be implemented on pharmacy stores, food production units, or industries, and citrus export centers for reliable citrus fruit classification.","PeriodicalId":22617,"journal":{"name":"The Journal of Agricultural Extension","volume":"2003 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Agricultural Extension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33687/IJAE.009.02.2525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Citrus family consists of a variety of eatable, consumable and usable items with varying nutritional contents. Naked eye citrus classification needs expert human effort, which provides poor decision reliability. The unreliable classification decision may be extremely hazardous when the citrus is being classified for exports or usage in pharmacy products and various food items. In this paper, citrus fruit has been classified on shape and texture features. Principal Component Analysis (PCA) was used as a methodology to explore statistical findings. The average accuracy of the system proposed is 84%. This system can be implemented on pharmacy stores, food production units, or industries, and citrus export centers for reliable citrus fruit classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于形状和质地的柑橘主成分分类
柑橘家族包括各种可食用的,可消费的和可用的项目,具有不同的营养成分。柑橘裸眼分类需要专家人力,决策可靠性较差。当柑橘被分类用于出口或医药产品和各种食品时,不可靠的分类决策可能是极其危险的。本文对柑橘类水果的形状和质地特征进行了分类。使用主成分分析(PCA)作为研究统计结果的方法。该系统的平均准确率为84%。该系统可在药店、食品生产单位或行业、柑橘出口中心实施,实现可靠的柑橘水果分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Veganic Agriculture in the United States: Opportunities for Research, Outreach, and Education Lessons Learned from the Development of the North Carolina Extension Master Food Volunteer Program Designing Educational Newsletter Interventions: An Example That Supported Grandfamilies’ Physical Wellness Needs 4-H Youth Development Programming in Indigenous Communities: A Critical Review of Cooperative Extension Literature Scenario Planning for Resilient Agricultural Systems: A Process for Engaging Controversy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1