{"title":"Predicting the ratings of Amazon products using Big Data","authors":"Jongwook Woo, Monika Mishra","doi":"10.1002/widm.1400","DOIUrl":null,"url":null,"abstract":"This paper aims to apply several machine learning (ML) models to the massive dataset present in the area of e‐commerce from Amazon to analyze and predict ratings and to recommend products. For this purpose, we have used both traditional and Big Data algorithms. As the Amazon product review dataset is large, we present Big Data architecture suitable massive dataset for storing and computation, which is not possible with the traditional architecture. Furthermore, the dataset contains 15 attributes and has about 7 million records. With the dataset, we develop several models in Oracle Big Data and Azure Cloud Computing services to predict the review rating and recommendation for the items at Amazon. We present a comparative conclusion in terms of the accuracy as well as the efficiency with Spark ML—the Big Data architecture, and Azure ML—the traditional architecture.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"1 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1400","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 7
Abstract
This paper aims to apply several machine learning (ML) models to the massive dataset present in the area of e‐commerce from Amazon to analyze and predict ratings and to recommend products. For this purpose, we have used both traditional and Big Data algorithms. As the Amazon product review dataset is large, we present Big Data architecture suitable massive dataset for storing and computation, which is not possible with the traditional architecture. Furthermore, the dataset contains 15 attributes and has about 7 million records. With the dataset, we develop several models in Oracle Big Data and Azure Cloud Computing services to predict the review rating and recommendation for the items at Amazon. We present a comparative conclusion in terms of the accuracy as well as the efficiency with Spark ML—the Big Data architecture, and Azure ML—the traditional architecture.
期刊介绍:
The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.