Identifying Catheter and Line Position in Chest X-Rays Using GANs

Milan Aryal, Nasim Yahyasoltani
{"title":"Identifying Catheter and Line Position in Chest X-Rays Using GANs","authors":"Milan Aryal, Nasim Yahyasoltani","doi":"10.1109/ICMLA52953.2021.00027","DOIUrl":null,"url":null,"abstract":"Catheter is a thin tube that is inserted into patients body to provide fluids or medication. The placement of catheter in the chest is very important and if placed wrongly can be life threatening. Radiologists utilize X-ray images of the chest to determine the correctness of placement of catheter. In the time of global pandemic, when the hospitals are crowded with the patients, radiologists might not be able to manually observe all the X-rays. In this situation, an automatic method to identify catheter in the X-ray images would be of great help. In this paper, a novel method to automatically detect the presence and position of the catheter using X-ray images is developed. The proposed algorithm deploys generative adversarial network (GAN) to synthesize the catheter in X-ray images. Transfer learning is then used to classify the catheter and its correct placement. Octave convolution instead of vanilla convolution is utilized to improve the efficiency of deep learning method for classification. Through data augmentation different transformation of images are generated to make the model more robust to noisy images.","PeriodicalId":6750,"journal":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"6 1","pages":"122-127"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA52953.2021.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Catheter is a thin tube that is inserted into patients body to provide fluids or medication. The placement of catheter in the chest is very important and if placed wrongly can be life threatening. Radiologists utilize X-ray images of the chest to determine the correctness of placement of catheter. In the time of global pandemic, when the hospitals are crowded with the patients, radiologists might not be able to manually observe all the X-rays. In this situation, an automatic method to identify catheter in the X-ray images would be of great help. In this paper, a novel method to automatically detect the presence and position of the catheter using X-ray images is developed. The proposed algorithm deploys generative adversarial network (GAN) to synthesize the catheter in X-ray images. Transfer learning is then used to classify the catheter and its correct placement. Octave convolution instead of vanilla convolution is utilized to improve the efficiency of deep learning method for classification. Through data augmentation different transformation of images are generated to make the model more robust to noisy images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用gan识别胸部x光中导管和线的位置
导管是一种插入病人体内提供液体或药物的细管。导管在胸部的放置是非常重要的,如果放置错误可能会危及生命。放射科医生利用胸部x光片来确定导管放置的正确性。在全球大流行时期,医院里挤满了病人,放射科医生可能无法手动观察所有的x光片。在这种情况下,在x射线图像中自动识别导管的方法将大有帮助。本文提出了一种利用x射线图像自动检测导管存在和位置的新方法。该算法利用生成对抗网络(GAN)在x射线图像中合成导管。然后使用迁移学习对导管进行分类和正确放置。利用八度卷积代替普通卷积来提高深度学习分类方法的效率。通过数据增强,生成图像的不同变换,使模型对噪声图像具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Offensive Content on Twitter During Proud Boys Riots Explainable Zero-Shot Modelling of Clinical Depression Symptoms from Text Deep Learning Methods for the Prediction of Information Display Type Using Eye Tracking Sequences Step Detection using SVM on NURVV Trackers Condition Monitoring for Power Converters via Deep One-Class Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1