{"title":"Effect of process parameters on the phase transformation kinetics in copper-based alloys and composites","authors":"M. Šimic, N. Radović, M. Gordić, J. Ružić","doi":"10.30544/571","DOIUrl":null,"url":null,"abstract":"Copper-based alloys and composites, owing to their convenient properties, are being considered essential materials in various industries. Since copper possesses an ability to develop high corrosion resistance, putting it in the domain of a desirable material in the manufacturing of valves, pipes, and also systems that carry industrial gases and aqueous fluids. Its usage is also invaluable for cables and electrical wires. This review paper describes diversity in copper alloy processing techniques (powder and ingot metallurgy) which are alongside the phase transformation kinetics interpreted and explained in detail. Furthermore, the focus is put on the copper alloys, as well as the kinetics present in these systems, with the application being highlighted. Correlation between physical properties and phase transformation kinetics in copper alloys is made. It is shown that if certain alloying elements are to be added, different properties could be improved. The effect of phase precipitation on phase transformation kinetics of copper alloys is shown by studying the Cu–15Ni–8Sn alloy.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30544/571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Copper-based alloys and composites, owing to their convenient properties, are being considered essential materials in various industries. Since copper possesses an ability to develop high corrosion resistance, putting it in the domain of a desirable material in the manufacturing of valves, pipes, and also systems that carry industrial gases and aqueous fluids. Its usage is also invaluable for cables and electrical wires. This review paper describes diversity in copper alloy processing techniques (powder and ingot metallurgy) which are alongside the phase transformation kinetics interpreted and explained in detail. Furthermore, the focus is put on the copper alloys, as well as the kinetics present in these systems, with the application being highlighted. Correlation between physical properties and phase transformation kinetics in copper alloys is made. It is shown that if certain alloying elements are to be added, different properties could be improved. The effect of phase precipitation on phase transformation kinetics of copper alloys is shown by studying the Cu–15Ni–8Sn alloy.