The Differences in Lower Extremity Joints Energy Dissipation Strategy during Landing between Athletes with Symptomatic Patellar Tendinopathy (PT) and without Patellar Tendinopathy (UPT)
Datao Xu, Zhenghui Lu, Siqin Shen, G. Fekete, U. Ugbolue, Yaodong Gu
{"title":"The Differences in Lower Extremity Joints Energy Dissipation Strategy during Landing between Athletes with Symptomatic Patellar Tendinopathy (PT) and without Patellar Tendinopathy (UPT)","authors":"Datao Xu, Zhenghui Lu, Siqin Shen, G. Fekete, U. Ugbolue, Yaodong Gu","doi":"10.32604/MCB.2021.015453","DOIUrl":null,"url":null,"abstract":"Patellar tendinopathy is a clinical symptom of patellar tendons characterized by local pain in the front of the knee joint. It is common among basketball and volleyball players. Patients with patellar tendinopathy may exhibit different landing strategies during landing compared to healthy individuals. The purpose of this study was to compare the differences in lower limb joint energy dissipation (eccentric work) values for the symptomatic patellar tendinopathy (PT) athletes and no patellar tendinopathy (UPT) athletes during single-leg landing. A total of 26 (PT: 13, UPT:13) semi-professional male basketball and volleyball player’s kinetic data were collected during the landing phases. Joint work was calculated by the integral of joint power over time. In this study, the result showed that the ankle joint means energy dissipation (p < 0.001) and total energy dissipation (p < 0.001) of PT were significantly greater than UPT. Compared to the UPT athletes, the PT athletes showed smaller knee joint mean energy dissipation (p = 0.002) and contribution to total energy dissipation (p < 0.001) during the landing stance. Meanwhile, there were no differences in hip joint contribution to total energy dissipation (p = 0.523) and lower limb total energy dissipation (p = 0.127). A deeper understanding of each joint’s energy dissipation contribution ratio between UPT and PT during landing can provide clues that reveal the biomechanical mechanism of PT athletes landing. Further study should choose a larger sample size to more comprehensively reveal the energy dissipation strategy of PT during landing.","PeriodicalId":48719,"journal":{"name":"Molecular & Cellular Biomechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Biomechanics","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.32604/MCB.2021.015453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 10
Abstract
Patellar tendinopathy is a clinical symptom of patellar tendons characterized by local pain in the front of the knee joint. It is common among basketball and volleyball players. Patients with patellar tendinopathy may exhibit different landing strategies during landing compared to healthy individuals. The purpose of this study was to compare the differences in lower limb joint energy dissipation (eccentric work) values for the symptomatic patellar tendinopathy (PT) athletes and no patellar tendinopathy (UPT) athletes during single-leg landing. A total of 26 (PT: 13, UPT:13) semi-professional male basketball and volleyball player’s kinetic data were collected during the landing phases. Joint work was calculated by the integral of joint power over time. In this study, the result showed that the ankle joint means energy dissipation (p < 0.001) and total energy dissipation (p < 0.001) of PT were significantly greater than UPT. Compared to the UPT athletes, the PT athletes showed smaller knee joint mean energy dissipation (p = 0.002) and contribution to total energy dissipation (p < 0.001) during the landing stance. Meanwhile, there were no differences in hip joint contribution to total energy dissipation (p = 0.523) and lower limb total energy dissipation (p = 0.127). A deeper understanding of each joint’s energy dissipation contribution ratio between UPT and PT during landing can provide clues that reveal the biomechanical mechanism of PT athletes landing. Further study should choose a larger sample size to more comprehensively reveal the energy dissipation strategy of PT during landing.
期刊介绍:
The field of biomechanics concerns with motion, deformation, and forces in biological systems. With the explosive progress in molecular biology, genomic engineering, bioimaging, and nanotechnology, there will be an ever-increasing generation of knowledge and information concerning the mechanobiology of genes, proteins, cells, tissues, and organs. Such information will bring new diagnostic tools, new therapeutic approaches, and new knowledge on ourselves and our interactions with our environment. It becomes apparent that biomechanics focusing on molecules, cells as well as tissues and organs is an important aspect of modern biomedical sciences. The aims of this journal are to facilitate the studies of the mechanics of biomolecules (including proteins, genes, cytoskeletons, etc.), cells (and their interactions with extracellular matrix), tissues and organs, the development of relevant advanced mathematical methods, and the discovery of biological secrets. As science concerns only with relative truth, we seek ideas that are state-of-the-art, which may be controversial, but stimulate and promote new ideas, new techniques, and new applications.