LURU: global-scope FPGA technology mapping with content-addressable memories

Q3 Arts and Humanities Giornale di Storia Costituzionale Pub Date : 2004-12-13 DOI:10.1109/ICECS.2004.1399752
Joshua M. Lucas, R. Hoare, I. Kourtev, A. Jones
{"title":"LURU: global-scope FPGA technology mapping with content-addressable memories","authors":"Joshua M. Lucas, R. Hoare, I. Kourtev, A. Jones","doi":"10.1109/ICECS.2004.1399752","DOIUrl":null,"url":null,"abstract":"The paper proposes a technique for area-optimized FPGA technology mapping. The LURU algorithm maps a combinational circuit to a network of K-input lookup tables (LUTs). The LURU algorithm uses content addressable memory (CAM) to enable parallel pattern matching in a Boolean network. As a result, it is possible to perform global searches quickly within an entire Boolean network, thus increasing the quality of results compared to algorithms of local scope. To utilize CAM for the LURU algorithm, a circuit is described as a set of one dimensional text strings, each of which independently represents the topology of a portion of the circuit. The LURU algorithm was tested with specially partitioned circuits from the ISCAS'85 set of combinational benchmarks. These results are compared with results obtained from the mapping algorithms FlowMap and CutMap. It is demonstrated that using LURU leads to an average of 25% area improvement over both FlowMap and CutMap.","PeriodicalId":38467,"journal":{"name":"Giornale di Storia Costituzionale","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Giornale di Storia Costituzionale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2004.1399752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 6

Abstract

The paper proposes a technique for area-optimized FPGA technology mapping. The LURU algorithm maps a combinational circuit to a network of K-input lookup tables (LUTs). The LURU algorithm uses content addressable memory (CAM) to enable parallel pattern matching in a Boolean network. As a result, it is possible to perform global searches quickly within an entire Boolean network, thus increasing the quality of results compared to algorithms of local scope. To utilize CAM for the LURU algorithm, a circuit is described as a set of one dimensional text strings, each of which independently represents the topology of a portion of the circuit. The LURU algorithm was tested with specially partitioned circuits from the ISCAS'85 set of combinational benchmarks. These results are compared with results obtained from the mapping algorithms FlowMap and CutMap. It is demonstrated that using LURU leads to an average of 25% area improvement over both FlowMap and CutMap.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LURU:具有内容可寻址存储器的全局范围FPGA技术映射
提出了一种面积优化的FPGA技术映射方法。LURU算法将组合电路映射到k输入查找表(lut)网络。LURU算法使用内容可寻址存储器(CAM)在布尔网络中实现并行模式匹配。因此,可以在整个布尔网络中快速执行全局搜索,从而与局部范围的算法相比提高了结果的质量。为了将CAM用于LURU算法,电路被描述为一组一维文本字符串,每个文本字符串独立地表示电路的一部分的拓扑结构。LURU算法用ISCAS'85组合基准的特殊划分电路进行了测试。这些结果与映射算法FlowMap和CutMap得到的结果进行了比较。结果表明,与FlowMap和CutMap相比,使用LURU可以平均提高25%的面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Giornale di Storia Costituzionale
Giornale di Storia Costituzionale Arts and Humanities-History
CiteScore
0.20
自引率
0.00%
发文量
0
期刊最新文献
PD diagnosis on medium voltage cables with oscillating voltage (OWTS) Spintronic logic circuit design for nanoscale computation A 0.8 V CMOS TSPC adiabatic DCVS logic circuit with the bootstrap technique for low-power VLSI Efficient Gabor expansion using non minimal dual Gabor windows 3D power grid modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1