Model-assisted Linear Extended State Observer for Opto-Electronic Stabilized Platform

Kang Nie, Qi Qiao, Jiuqiang Deng, Wei Ren, Xi Zhou, Yao Mao
{"title":"Model-assisted Linear Extended State Observer for Opto-Electronic Stabilized Platform","authors":"Kang Nie, Qi Qiao, Jiuqiang Deng, Wei Ren, Xi Zhou, Yao Mao","doi":"10.1109/YAC.2019.8787695","DOIUrl":null,"url":null,"abstract":"In this paper, a control strategy with a model-assisted linear extended state observer (MLESO) is proposed to enhance the disturbance suppression performance for Opto-Electronic stabilized platform. First, we incorporate known model information which can be identified from the open loop frequency response of controlled plant in the framework of the presented linear extended state observer (LESO), for the degree and high order gain of the controlled plant are enough. The tuning parameters of observer gain and controller gain are reduced to two: observer bandwidth and controller bandwidth. Then, constructing a MLESO can estimate and compensate the generalized disturbance to stabilize line of sight (LOS). Simulation results indicate that system with MLESO shows a stronger disturbance rejection ability in low and medium frequency by a simple linear PD control law, compared with traditional single position closed-loop control system.","PeriodicalId":6669,"journal":{"name":"2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","volume":"13 1","pages":"370-374"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YAC.2019.8787695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a control strategy with a model-assisted linear extended state observer (MLESO) is proposed to enhance the disturbance suppression performance for Opto-Electronic stabilized platform. First, we incorporate known model information which can be identified from the open loop frequency response of controlled plant in the framework of the presented linear extended state observer (LESO), for the degree and high order gain of the controlled plant are enough. The tuning parameters of observer gain and controller gain are reduced to two: observer bandwidth and controller bandwidth. Then, constructing a MLESO can estimate and compensate the generalized disturbance to stabilize line of sight (LOS). Simulation results indicate that system with MLESO shows a stronger disturbance rejection ability in low and medium frequency by a simple linear PD control law, compared with traditional single position closed-loop control system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光电稳定平台的模型辅助线性扩展状态观测器
为了提高光电稳定平台的干扰抑制性能,提出了一种基于模型辅助线性扩展状态观测器(MLESO)的控制策略。首先,我们在线性扩展状态观测器(LESO)的框架中加入已知的模型信息,这些信息可以从被控对象的开环频率响应中识别出来,因为被控对象的度和高阶增益足够。将观测器增益和控制器增益的调谐参数简化为两个:观测器带宽和控制器带宽。然后,构造一种广义扰动估计和补偿方法来稳定视距。仿真结果表明,与传统的单位置闭环控制系统相比,采用简单线性PD控制律的MLESO系统具有更强的中低频抗干扰能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Kinematics Analysis of a Bionic Finger Hand Rehabilitation Robot Mechanism The PI Control Method in the Input Multi-rate Digital Control System with Low Sample-rate Sensors Exact Delay Margin on Containment Control for Discrete-Time First-Order Multi-Agent Systems The driverless car based on the online learning platform realizes the red light recognition and lane line recognition Path Planning of Multiple AGVs Using a Time-space Network Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1