Statistical models: Conventional, penalized and hierarchical likelihood

IF 11 Q1 STATISTICS & PROBABILITY Statistics Surveys Pub Date : 2009-01-01 DOI:10.1214/08-SS039
D. Commenges
{"title":"Statistical models: Conventional, penalized and hierarchical likelihood","authors":"D. Commenges","doi":"10.1214/08-SS039","DOIUrl":null,"url":null,"abstract":"We give an overview of statistical models and likelihood, together with two of its variants: penalized and hierarchical likelihood. The Kullback-Leibler divergence is referred to repeatedly in the literature, for defining the misspecification risk of a model and for grounding the likelihood and the likelihood cross-validation, which can be used for choosing weights in penalized likelihood. Families of penalized likelihood and particular sieves estimators are shown to be equivalent. The similarity of these likelihoods with a posteriori distributions in a Bayesian approach is considered","PeriodicalId":46627,"journal":{"name":"Statistics Surveys","volume":"17 1","pages":"1-17"},"PeriodicalIF":11.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/08-SS039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 12

Abstract

We give an overview of statistical models and likelihood, together with two of its variants: penalized and hierarchical likelihood. The Kullback-Leibler divergence is referred to repeatedly in the literature, for defining the misspecification risk of a model and for grounding the likelihood and the likelihood cross-validation, which can be used for choosing weights in penalized likelihood. Families of penalized likelihood and particular sieves estimators are shown to be equivalent. The similarity of these likelihoods with a posteriori distributions in a Bayesian approach is considered
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
统计模型:传统可能性、惩罚可能性和分层可能性
我们给出了统计模型和似然的概述,以及它的两个变体:惩罚似然和分层似然。Kullback-Leibler散度在文献中被反复提及,用于定义模型的错误规范风险,并为似然和似然交叉验证奠定基础,可用于选择惩罚似然中的权重。惩罚似然估计族和特殊筛估计族是等价的。在贝叶斯方法中考虑了这些可能性与后验分布的相似性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistics Surveys
Statistics Surveys STATISTICS & PROBABILITY-
CiteScore
11.70
自引率
0.00%
发文量
5
期刊介绍: Statistics Surveys publishes survey articles in theoretical, computational, and applied statistics. The style of articles may range from reviews of recent research to graduate textbook exposition. Articles may be broad or narrow in scope. The essential requirements are a well specified topic and target audience, together with clear exposition. Statistics Surveys is sponsored by the American Statistical Association, the Bernoulli Society, the Institute of Mathematical Statistics, and by the Statistical Society of Canada.
期刊最新文献
White noise testing for functional time series Spline local basis methods for nonparametric density estimation Core-periphery structure in networks: A statistical exposition Kronecker-structured covariance models for multiway data A brief and understandable guide to pseudo-random number generators and specific models for security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1