History matching of an Oil Reservoir using Non-dominated Sorting Genetic Algorithm-II coupled with Sequential Gaussian Simulation

Giridhar Vadicharla, pushpanth Sharma, S. Gupta, D. Saraf
{"title":"History matching of an Oil Reservoir using Non-dominated Sorting Genetic Algorithm-II coupled with Sequential Gaussian Simulation","authors":"Giridhar Vadicharla, pushpanth Sharma, S. Gupta, D. Saraf","doi":"10.1109/ICSES52305.2021.9633849","DOIUrl":null,"url":null,"abstract":"History matching, Reservoir modeling, and production projection help with effective petroleum exploration management. These reservoirs are nonlinear and heterogeneous in nature. Obtaining credible calculates of the spatial distribution of the parameters of the reservoir and related production profiles is frequently challenging. The goal of this research is to use Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and Sequential Gaussian Simulation (SGSIM) to history-match an oil reservoir. The normalized sum-of-square errors for history matching is taken as objective function. A case study is chosen and the defined objective function is used to optimize the parameters. This article analyzes the application of NSGA-II, with larger number of variables, and NSGA-II coupled with Sequential Gaussian Simulation (SGSIM), in which number of variables is drastically reduced, for the same case study.","PeriodicalId":6777,"journal":{"name":"2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES)","volume":"38 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSES52305.2021.9633849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

History matching, Reservoir modeling, and production projection help with effective petroleum exploration management. These reservoirs are nonlinear and heterogeneous in nature. Obtaining credible calculates of the spatial distribution of the parameters of the reservoir and related production profiles is frequently challenging. The goal of this research is to use Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and Sequential Gaussian Simulation (SGSIM) to history-match an oil reservoir. The normalized sum-of-square errors for history matching is taken as objective function. A case study is chosen and the defined objective function is used to optimize the parameters. This article analyzes the application of NSGA-II, with larger number of variables, and NSGA-II coupled with Sequential Gaussian Simulation (SGSIM), in which number of variables is drastically reduced, for the same case study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非支配排序遗传算法与序贯高斯模拟相结合的油藏历史匹配
历史匹配、油藏建模和产量预测有助于有效的石油勘探管理。这些储层具有非线性和非均质性质。获得可靠的储层参数空间分布和相关生产剖面的计算常常是一项挑战。本研究的目标是使用非支配排序遗传算法- ii (NSGA-II)和顺序高斯模拟(SGSIM)对油藏进行历史匹配。将历史匹配的归一化平方和误差作为目标函数。选取一个实例,利用定义的目标函数对参数进行优化。本文分析了变量数量较大的NSGA-II的应用,以及NSGA-II与变量数量大幅减少的顺序高斯模拟(Sequential Gaussian Simulation, SGSIM)相结合的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MPPT Based Solar PV and Class IV Powered Brushless DC Motor for Water Pump System Forecasting the potential influence of Covid-19 using Data Science and Analytics Asthma, Alzheimer's and Dementia Disease Detection based on Voice Recognition using Multi-Layer Perceptron Algorithm Automatic Speed Controller of Vehicles Using Arduino Board Implementation of Election System Using Blockchain Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1