{"title":"Generalization and equilibrium in generative adversarial nets (GANs) (invited talk)","authors":"Tengyu Ma","doi":"10.1145/3188745.3232194","DOIUrl":null,"url":null,"abstract":"Generative Adversarial Networks (GANs) have become one of the dominant methods for fitting generative models to complicated real-life data, and even found unusual uses such as designing good cryptographic primitives. In this talk, we will first introduce the ba- sics of GANs and then discuss the fundamental statistical question about GANs — assuming the training can succeed with polynomial samples, can we have any statistical guarantees for the estimated distributions? In the work with Arora, Ge, Liang, and Zhang, we suggested a dilemma: powerful discriminators cause overfitting, whereas weak discriminators cannot detect mode collapse. Such a conundrum may be solved or alleviated by designing discrimina- tor class with strong distinguishing power against the particular generator class (instead of against all possible generators.)","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3232194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Generative Adversarial Networks (GANs) have become one of the dominant methods for fitting generative models to complicated real-life data, and even found unusual uses such as designing good cryptographic primitives. In this talk, we will first introduce the ba- sics of GANs and then discuss the fundamental statistical question about GANs — assuming the training can succeed with polynomial samples, can we have any statistical guarantees for the estimated distributions? In the work with Arora, Ge, Liang, and Zhang, we suggested a dilemma: powerful discriminators cause overfitting, whereas weak discriminators cannot detect mode collapse. Such a conundrum may be solved or alleviated by designing discrimina- tor class with strong distinguishing power against the particular generator class (instead of against all possible generators.)