{"title":"Searching for Alternative Plasmonic Materials for Specific Applications","authors":"A. Bansal, S. S. Verma","doi":"10.1155/2014/897125","DOIUrl":null,"url":null,"abstract":"The localized surface plasmon resonance (LSPR) based optical properties such as light scattering, absorption, and extinction efficiencies of multimetallic and metal-semiconductor nanostructures will be studied. The effect of size, surrounding medium, interaction between the particles, composition of the particles, and substrate on LSPR peak position, its line width, and maxima of cross-sections will also be discussed to optimize the selected systems for various applications like plasmonic sensors and biomedical applications and to enhance the efficiency of solar cells. Therefore, by varying all these factors, the LSPR peak of multimetallic and metal-semiconductor nanostructures can be tuned over the entire UV-visible to infrared (IR) region of the electromagnetic spectrum. Moreover the optical properties of underlying semiconductor materials can be enhanced by combining the semiconductor with noble metal nanoparticles.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"67 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/897125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
The localized surface plasmon resonance (LSPR) based optical properties such as light scattering, absorption, and extinction efficiencies of multimetallic and metal-semiconductor nanostructures will be studied. The effect of size, surrounding medium, interaction between the particles, composition of the particles, and substrate on LSPR peak position, its line width, and maxima of cross-sections will also be discussed to optimize the selected systems for various applications like plasmonic sensors and biomedical applications and to enhance the efficiency of solar cells. Therefore, by varying all these factors, the LSPR peak of multimetallic and metal-semiconductor nanostructures can be tuned over the entire UV-visible to infrared (IR) region of the electromagnetic spectrum. Moreover the optical properties of underlying semiconductor materials can be enhanced by combining the semiconductor with noble metal nanoparticles.