Raja Srinivasa Rao Mohan Aita, T. Omar, A. Sarkar, M. Roy, Xing Sun, Rachel Lunn, Huan Wu
{"title":"Bond Strength Testing and Simulation for Grouted Pile/sleeve Connections in Aged Structures","authors":"Raja Srinivasa Rao Mohan Aita, T. Omar, A. Sarkar, M. Roy, Xing Sun, Rachel Lunn, Huan Wu","doi":"10.2118/207870-ms","DOIUrl":null,"url":null,"abstract":"\n Recently the old accommodation platform (OAP) was decommissioned in Offshore Abu Dhabi. This platform was founded on four legs with piles inside and duly grouted inside pile and annulus. The main objective of this to carry out bond strength tests and finite element (FE) analysis for retrieved OAP grouted samples to investigate if any ageing effect on the bond strength of the grouted pile/sleeve connections for aged offshore structures. Nine Sleeve/Pile samples of varying lengths from 240mm to 1200mm were extracted for testing from the decommissioned platform. Dimensional analysis was carried out to assess the thickness loss and eccentricity. A bespoke testing rig with the maximum load capacity of 15,000kN was built at TWI Ltd. to perform bond strength tests. Finite element (FE) simulation of the testing was carried out and compared to the test results to calibrate and fine-tune material constitutive behaviour parameters and interfacial (friction and bond) parameters. Specimen measurements revealed a significant scatter in annulus grout thicknesses of various sleeve/pile specimens with maximum variations of up to 52%. These results indicate that pile alignment is strongly variable. Shear keys in the form of steel rings welded alternately onto the leg's inner surface and the pile outer surface providing mechanical resistance to relative sliding of the grout between the two bodies. The testing results shown that the ultimate loads varied significantly among various specimens, ranged between 9920kN for 1m specimen and 1800kN for 1.2m specimen. FE simulations agreed well with the observed failure modes and were used to investigate how the measured failure loads were influenced by grout material properties, cohesive bond behaviour and geometrical parameters such as shear keys and eccentricity. From the FE studies, it was found that different cohesive (surface) parameters are required to give the best fit, with the higher cohesive stiffness and strength associated with a higher failure load. Grout strength is also a significant parameter, but the effect of surface cohesion is less significant compared to material strength. The majority of the tested values were found to be meeting the minimum bond strength resulting from available standards (eg. ISO 19902). This type of real time testing output will provide insight into various parameters that contribute to bond strength in pile leg grouted connections. Moreover, these test and assessment results will form an integral and important input to various ongoing researches associated with ADNOC's grouted connections being carried out as part of another JIP led by National University of Singapore which is aimed at deriving design equations applicable to grouted connections beyond codal limits.","PeriodicalId":10981,"journal":{"name":"Day 4 Thu, November 18, 2021","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, November 18, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207870-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recently the old accommodation platform (OAP) was decommissioned in Offshore Abu Dhabi. This platform was founded on four legs with piles inside and duly grouted inside pile and annulus. The main objective of this to carry out bond strength tests and finite element (FE) analysis for retrieved OAP grouted samples to investigate if any ageing effect on the bond strength of the grouted pile/sleeve connections for aged offshore structures. Nine Sleeve/Pile samples of varying lengths from 240mm to 1200mm were extracted for testing from the decommissioned platform. Dimensional analysis was carried out to assess the thickness loss and eccentricity. A bespoke testing rig with the maximum load capacity of 15,000kN was built at TWI Ltd. to perform bond strength tests. Finite element (FE) simulation of the testing was carried out and compared to the test results to calibrate and fine-tune material constitutive behaviour parameters and interfacial (friction and bond) parameters. Specimen measurements revealed a significant scatter in annulus grout thicknesses of various sleeve/pile specimens with maximum variations of up to 52%. These results indicate that pile alignment is strongly variable. Shear keys in the form of steel rings welded alternately onto the leg's inner surface and the pile outer surface providing mechanical resistance to relative sliding of the grout between the two bodies. The testing results shown that the ultimate loads varied significantly among various specimens, ranged between 9920kN for 1m specimen and 1800kN for 1.2m specimen. FE simulations agreed well with the observed failure modes and were used to investigate how the measured failure loads were influenced by grout material properties, cohesive bond behaviour and geometrical parameters such as shear keys and eccentricity. From the FE studies, it was found that different cohesive (surface) parameters are required to give the best fit, with the higher cohesive stiffness and strength associated with a higher failure load. Grout strength is also a significant parameter, but the effect of surface cohesion is less significant compared to material strength. The majority of the tested values were found to be meeting the minimum bond strength resulting from available standards (eg. ISO 19902). This type of real time testing output will provide insight into various parameters that contribute to bond strength in pile leg grouted connections. Moreover, these test and assessment results will form an integral and important input to various ongoing researches associated with ADNOC's grouted connections being carried out as part of another JIP led by National University of Singapore which is aimed at deriving design equations applicable to grouted connections beyond codal limits.