A. Kostić, B. Dojčinović, Bojana Špirović Trifunović, D. Milinčić, N. Nedić, S. Stanojević, M. Pešić
{"title":"Micro/trace/toxic elements and insecticide residues level in monofloral bee-collected sunflower pollen- health risk assessment","authors":"A. Kostić, B. Dojčinović, Bojana Špirović Trifunović, D. Milinčić, N. Nedić, S. Stanojević, M. Pešić","doi":"10.1080/03601234.2022.2079348","DOIUrl":null,"url":null,"abstract":"Abstract The aim of the current research was to determine the content of (potentially) toxic elements and insecticide residues in monofloral sunflower bee-collected pollen. For micro- and trace elements determination Inductively Coupled Plasma Optical Emission (ICP-OES) analytical method was used while insecticide residue content was monitored by applying Liquid Chromatography-Mass Spectrometry (LC-MS/MS) technique. In total, seventeen micro/trace elements were quantified. None of the twenty four examined insecticides were detected above the limit of detection (LOD) which makes studied sunflower bee-collected pollen eco-friendly both to bees and humans. Based on presence of several toxic as well as potentially toxic elements calculations for estimated weekly intakes (EWI), and oral intakes (OI) were made and used for health risk assessment based on the computation of two different health risk quotients (HQ)- acute (HQA) and long-term (HQL). The obtained results proved that all HQ values for adults were negligible or low except in case of HQL value for arsenic (0.32) which can be characterized as medium. However, in case of children much more precaution is needed due to significant HQL risk for arsenic (1.511). The attained data can help to make additional linkage between bee-collected pollen as food ingredients and potential benefits/risks for human health.","PeriodicalId":15670,"journal":{"name":"Journal of Environmental Science and Health, Part B","volume":"1 1","pages":"568 - 575"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health, Part B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03601234.2022.2079348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract The aim of the current research was to determine the content of (potentially) toxic elements and insecticide residues in monofloral sunflower bee-collected pollen. For micro- and trace elements determination Inductively Coupled Plasma Optical Emission (ICP-OES) analytical method was used while insecticide residue content was monitored by applying Liquid Chromatography-Mass Spectrometry (LC-MS/MS) technique. In total, seventeen micro/trace elements were quantified. None of the twenty four examined insecticides were detected above the limit of detection (LOD) which makes studied sunflower bee-collected pollen eco-friendly both to bees and humans. Based on presence of several toxic as well as potentially toxic elements calculations for estimated weekly intakes (EWI), and oral intakes (OI) were made and used for health risk assessment based on the computation of two different health risk quotients (HQ)- acute (HQA) and long-term (HQL). The obtained results proved that all HQ values for adults were negligible or low except in case of HQL value for arsenic (0.32) which can be characterized as medium. However, in case of children much more precaution is needed due to significant HQL risk for arsenic (1.511). The attained data can help to make additional linkage between bee-collected pollen as food ingredients and potential benefits/risks for human health.