DMHZ: A Decision Support System Based on Machine Computational Design for Heart Disease Diagnosis Using Z-Alizadeh Sani Dataset

Ankur Gupta, Harkirat Singh Arora, Rahul Kumar, B. Raman
{"title":"DMHZ: A Decision Support System Based on Machine Computational Design for Heart Disease Diagnosis Using Z-Alizadeh Sani Dataset","authors":"Ankur Gupta, Harkirat Singh Arora, Rahul Kumar, B. Raman","doi":"10.1109/ICOIN50884.2021.9333884","DOIUrl":null,"url":null,"abstract":"Cardiovascular heart disease is at the top of the list of lethal diseases which causes major cancer deaths worldwide with mortality rate of approximately 7 million per annum. The development of machine computational design would help in early detection, prognostication and timely diagnosis of disease which will help in increasing the life-span of a patient. In the proposed work, a framework based on machine computations, DMHZ, is proposed for heart disease diagnosis which is validated using Z-Alizadeh Sani heart disease dataset from UCI repository. DMHZ utilizes the feature extraction techniques principal component analysis (PCA) for numeric feature extraction and multiple correspondence analysis (MCA) for categorical feature extraction. The model, DMHZ, is trained using machine learning classifiers, Logistic Regression (LR), Random Forest (RF) and Support Vector Machine (SVM), and validated using holdout validation scheme with hold-out ratio 3:1. Experimentation results show that DMHZ outperforms several state-of-the-art methods in terms of accuracy.","PeriodicalId":6741,"journal":{"name":"2021 International Conference on Information Networking (ICOIN)","volume":"146 1","pages":"818-823"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN50884.2021.9333884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cardiovascular heart disease is at the top of the list of lethal diseases which causes major cancer deaths worldwide with mortality rate of approximately 7 million per annum. The development of machine computational design would help in early detection, prognostication and timely diagnosis of disease which will help in increasing the life-span of a patient. In the proposed work, a framework based on machine computations, DMHZ, is proposed for heart disease diagnosis which is validated using Z-Alizadeh Sani heart disease dataset from UCI repository. DMHZ utilizes the feature extraction techniques principal component analysis (PCA) for numeric feature extraction and multiple correspondence analysis (MCA) for categorical feature extraction. The model, DMHZ, is trained using machine learning classifiers, Logistic Regression (LR), Random Forest (RF) and Support Vector Machine (SVM), and validated using holdout validation scheme with hold-out ratio 3:1. Experimentation results show that DMHZ outperforms several state-of-the-art methods in terms of accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Z-Alizadeh Sani数据集的心脏病诊断机器计算设计决策支持系统
心血管心脏病是全世界导致主要癌症死亡的致命疾病之首,每年的死亡率约为700万人。机器计算设计的发展将有助于疾病的早期发现、预测和及时诊断,从而有助于延长患者的寿命。本文提出了一种基于机器计算的心脏病诊断框架DMHZ,并利用UCI存储库中的Z-Alizadeh Sani心脏病数据集对该框架进行了验证。DMHZ利用特征提取技术主成分分析(PCA)进行数值特征提取,多对应分析(MCA)进行分类特征提取。该模型DMHZ使用机器学习分类器、逻辑回归(LR)、随机森林(RF)和支持向量机(SVM)进行训练,并使用持留率为3:1的持留验证方案进行验证。实验结果表明,DMHZ在精度方面优于几种最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study on the Cluster-wise Regression Model for Bead Width in the Automatic GMA Welding GDFed: Dynamic Federated Learning for Heterogenous Device Using Graph Neural Network A Solution for Recovering Network Topology with Missing Links using Sparse Modeling Real-time health monitoring system design based on optical camera communication Multimedia Contents Retrieval based on 12-Mood Vector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1