{"title":"Effect of tool geometry on ultraprecision machining of soft-brittle materials: a comprehensive review","authors":"Weihai Huang, Jiwang Yan","doi":"10.1088/2631-7990/acab3f","DOIUrl":null,"url":null,"abstract":"Brittle materials are widely used for producing important components in the industry of optics, optoelectronics, and semiconductors. Ultraprecision machining of brittle materials with high surface quality and surface integrity helps improve the functional performance and lifespan of the components. According to their hardness, brittle materials can be roughly divided into hard-brittle and soft-brittle. Although there have been some literature reviews for ultraprecision machining of hard-brittle materials, up to date, very few review papers are available that focus on the processing of soft-brittle materials. Due to the ‘soft’ and ‘brittle’ properties, this group of materials has unique machining characteristics. This paper presents a comprehensive overview of recent advances in ultraprecision machining of soft-brittle materials. Critical aspects of machining mechanisms, such as chip formation, surface topography, and subsurface damage for different machining methods, including diamond turning, micro end milling, ultraprecision grinding, and micro/nano burnishing, are compared in terms of tool-workpiece interaction. The effects of tool geometries on the machining characteristics of soft-brittle materials are systematically analyzed, and dominating factors are sorted out. Problems and challenges in the engineering applications are identified, and solutions/guidelines for future R&D are provided.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"37 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/acab3f","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 7
Abstract
Brittle materials are widely used for producing important components in the industry of optics, optoelectronics, and semiconductors. Ultraprecision machining of brittle materials with high surface quality and surface integrity helps improve the functional performance and lifespan of the components. According to their hardness, brittle materials can be roughly divided into hard-brittle and soft-brittle. Although there have been some literature reviews for ultraprecision machining of hard-brittle materials, up to date, very few review papers are available that focus on the processing of soft-brittle materials. Due to the ‘soft’ and ‘brittle’ properties, this group of materials has unique machining characteristics. This paper presents a comprehensive overview of recent advances in ultraprecision machining of soft-brittle materials. Critical aspects of machining mechanisms, such as chip formation, surface topography, and subsurface damage for different machining methods, including diamond turning, micro end milling, ultraprecision grinding, and micro/nano burnishing, are compared in terms of tool-workpiece interaction. The effects of tool geometries on the machining characteristics of soft-brittle materials are systematically analyzed, and dominating factors are sorted out. Problems and challenges in the engineering applications are identified, and solutions/guidelines for future R&D are provided.
期刊介绍:
The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.