Effect of tool geometry on ultraprecision machining of soft-brittle materials: a comprehensive review

IF 16.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING International Journal of Extreme Manufacturing Pub Date : 2022-12-13 DOI:10.1088/2631-7990/acab3f
Weihai Huang, Jiwang Yan
{"title":"Effect of tool geometry on ultraprecision machining of soft-brittle materials: a comprehensive review","authors":"Weihai Huang, Jiwang Yan","doi":"10.1088/2631-7990/acab3f","DOIUrl":null,"url":null,"abstract":"Brittle materials are widely used for producing important components in the industry of optics, optoelectronics, and semiconductors. Ultraprecision machining of brittle materials with high surface quality and surface integrity helps improve the functional performance and lifespan of the components. According to their hardness, brittle materials can be roughly divided into hard-brittle and soft-brittle. Although there have been some literature reviews for ultraprecision machining of hard-brittle materials, up to date, very few review papers are available that focus on the processing of soft-brittle materials. Due to the ‘soft’ and ‘brittle’ properties, this group of materials has unique machining characteristics. This paper presents a comprehensive overview of recent advances in ultraprecision machining of soft-brittle materials. Critical aspects of machining mechanisms, such as chip formation, surface topography, and subsurface damage for different machining methods, including diamond turning, micro end milling, ultraprecision grinding, and micro/nano burnishing, are compared in terms of tool-workpiece interaction. The effects of tool geometries on the machining characteristics of soft-brittle materials are systematically analyzed, and dominating factors are sorted out. Problems and challenges in the engineering applications are identified, and solutions/guidelines for future R&D are provided.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"37 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/acab3f","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 7

Abstract

Brittle materials are widely used for producing important components in the industry of optics, optoelectronics, and semiconductors. Ultraprecision machining of brittle materials with high surface quality and surface integrity helps improve the functional performance and lifespan of the components. According to their hardness, brittle materials can be roughly divided into hard-brittle and soft-brittle. Although there have been some literature reviews for ultraprecision machining of hard-brittle materials, up to date, very few review papers are available that focus on the processing of soft-brittle materials. Due to the ‘soft’ and ‘brittle’ properties, this group of materials has unique machining characteristics. This paper presents a comprehensive overview of recent advances in ultraprecision machining of soft-brittle materials. Critical aspects of machining mechanisms, such as chip formation, surface topography, and subsurface damage for different machining methods, including diamond turning, micro end milling, ultraprecision grinding, and micro/nano burnishing, are compared in terms of tool-workpiece interaction. The effects of tool geometries on the machining characteristics of soft-brittle materials are systematically analyzed, and dominating factors are sorted out. Problems and challenges in the engineering applications are identified, and solutions/guidelines for future R&D are provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
刀具几何形状对软脆材料超精密加工的影响
脆性材料广泛用于光学、光电、半导体等行业的重要元器件生产。脆性材料的超精密加工,具有高表面质量和表面完整性,有助于提高部件的功能性能和寿命。脆性材料按其硬度大致可分为硬脆型和软脆型。虽然已有一些文献对硬脆材料的超精密加工进行了综述,但迄今为止,针对软脆材料的超精密加工的综述文献很少。由于“软”和“脆”的特性,这组材料具有独特的加工特性。本文综述了软脆材料超精密加工的最新进展。加工机制的关键方面,如切屑形成、表面形貌和亚表面损伤不同的加工方法,包括金刚石车削、微端铣、超精密磨削和微/纳米抛光,在工具-工件相互作用方面进行了比较。系统分析了刀具几何形状对软脆材料加工特性的影响,梳理了影响软脆材料加工特性的主要因素。确定了工程应用中的问题和挑战,并为未来的研发提供了解决方案/指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Extreme Manufacturing
International Journal of Extreme Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
17.70
自引率
6.10%
发文量
83
审稿时长
12 weeks
期刊介绍: The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.
期刊最新文献
Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration. Additively manufactured Ti-Ta-Cu alloys for the next-generation load-bearing implants. A novel approach of jet polishing for interior surface of small grooved components using three developed setups Elliptical vibration chiseling: a novel process for texturing ultra-high-aspect-ratio microstructures on the metallic surface Printability disparities in heterogeneous material combinations via laser directed energy deposition: a comparative study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1