Fast Pricing of Energy Derivatives with Mean-Reverting Jump-diffusion Processes

P. Sabino, Nicola Cufaro Petroni
{"title":"Fast Pricing of Energy Derivatives with Mean-Reverting Jump-diffusion Processes","authors":"P. Sabino, Nicola Cufaro Petroni","doi":"10.1080/1350486X.2021.1909488","DOIUrl":null,"url":null,"abstract":"ABSTRACT Most energy and commodity markets exhibit mean-reversion and occasional distinctive price spikes, which result in demand for derivative products which protect the holder against high prices. To this end, in this paper we present a few fast and efficient methodologies for the exact simulation of the spot price dynamics modelled as the exponential of the sum of a Gaussian Ornstein-Uhlenbeck process and an independent pure jump process, where the latter one is driven by a compound Poisson process with (bilateral) exponentially distributed jumps. These methodologies are finally applied to the pricing of Asian options, gas and hydro storages and swing options under different combinations of jump-diffusion market models, and the apparent computational advantages of the proposed procedures are emphasized.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"76 1","pages":"1 - 22"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2021.1909488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 11

Abstract

ABSTRACT Most energy and commodity markets exhibit mean-reversion and occasional distinctive price spikes, which result in demand for derivative products which protect the holder against high prices. To this end, in this paper we present a few fast and efficient methodologies for the exact simulation of the spot price dynamics modelled as the exponential of the sum of a Gaussian Ornstein-Uhlenbeck process and an independent pure jump process, where the latter one is driven by a compound Poisson process with (bilateral) exponentially distributed jumps. These methodologies are finally applied to the pricing of Asian options, gas and hydro storages and swing options under different combinations of jump-diffusion market models, and the apparent computational advantages of the proposed procedures are emphasized.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有均值回归跳跃扩散过程的能量导数的快速定价
大多数能源和商品市场表现出均值回归和偶尔的独特价格飙升,这导致对衍生产品的需求,以保护持有者免受高价格的影响。为此,在本文中,我们提出了一些快速和有效的方法来精确模拟现货价格动态模型为一个高斯Ornstein-Uhlenbeck过程和一个独立的纯跳跃过程的和的指数,后者是由一个复合泊松过程驱动的(双边)指数分布的跳跃。最后,将这些方法应用于跳跃-扩散市场模型不同组合下的亚洲期权、天然气和水力储存以及摆动期权的定价,并强调了所提出程序的明显计算优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
期刊最新文献
Price Impact Without Averaging On the Skew and Curvature of the Implied and Local Volatilities Arbitrage-Free Neural-SDE Market Models Policy Gradient Learning Methods for Stochastic Control with Exit Time and Applications to Share Repurchase Pricing Multi-Period Mean Expected-Shortfall Strategies: ‘Cut Your Losses and Ride Your Gains’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1