{"title":"Evaluation of 3D printed microfluidic networks to study fluid flow in rocks","authors":"S. M. Mousavi, S. Sadeghnejad, M. Ostadhassan","doi":"10.2516/ogst/2021029","DOIUrl":null,"url":null,"abstract":"Visualizing fluid flow in porous media can provide a better understanding of transport phenomena at the pore scale. In this regard, transparent micromodels are suitable tools to investigate fluid flow in porous media. However, using glass as the primary material makes them inappropriate for predicting the natural behavior of rocks. Moreover, constructing these micromodels is time-consuming via conventional methods. Thus, an alternative approach can be to employ 3D printing technology to fabricate representative porous media. This study investigates fluid flow processes through a transparent microfluidic device based on a complex porous geometry (natural rock) using digital-light processing printing technology. Unlike previous studies, this one has focused on manufacturing repeatability. This micromodel, like a custom-built transparent cell, is capable of modeling single and multiphase transport phenomena. First, the tomographic data of a carbonate rock sample is segmented and 3D printed by a digital-light processing printer. Two miscible and immiscible tracer injection experiments are performed on the printed microfluidic media, while the experiments are verified with the same boundary conditions using a CFD simulator. The comparison of the results is based on Structural Similarity Index Measure (SSIM), where in both miscible and immiscible experiments, more than 80% SSIM is achieved. This confirms the reliability of printing methodology for manufacturing reusable microfluidic models as a promising and reliable tool for visual investigation of fluid flow in porous media. Ultimately, this study presents a novel comprehensive framework for manufacturing 2.5D realistic microfluidic devices (micromodels) from pore-scale rock images that are validated through CFD simulations.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":"9 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/ogst/2021029","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 4
Abstract
Visualizing fluid flow in porous media can provide a better understanding of transport phenomena at the pore scale. In this regard, transparent micromodels are suitable tools to investigate fluid flow in porous media. However, using glass as the primary material makes them inappropriate for predicting the natural behavior of rocks. Moreover, constructing these micromodels is time-consuming via conventional methods. Thus, an alternative approach can be to employ 3D printing technology to fabricate representative porous media. This study investigates fluid flow processes through a transparent microfluidic device based on a complex porous geometry (natural rock) using digital-light processing printing technology. Unlike previous studies, this one has focused on manufacturing repeatability. This micromodel, like a custom-built transparent cell, is capable of modeling single and multiphase transport phenomena. First, the tomographic data of a carbonate rock sample is segmented and 3D printed by a digital-light processing printer. Two miscible and immiscible tracer injection experiments are performed on the printed microfluidic media, while the experiments are verified with the same boundary conditions using a CFD simulator. The comparison of the results is based on Structural Similarity Index Measure (SSIM), where in both miscible and immiscible experiments, more than 80% SSIM is achieved. This confirms the reliability of printing methodology for manufacturing reusable microfluidic models as a promising and reliable tool for visual investigation of fluid flow in porous media. Ultimately, this study presents a novel comprehensive framework for manufacturing 2.5D realistic microfluidic devices (micromodels) from pore-scale rock images that are validated through CFD simulations.
期刊介绍:
OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition.
OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases.
The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month.
Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.