{"title":"Self-Folding Acute-Angle Origami Driven by Surface Bending Force","authors":"T. Uchida, H. Yasuga, T. Tachi, E. Iwase, H. Onoe","doi":"10.1109/MEMS46641.2020.9056453","DOIUrl":null,"url":null,"abstract":"This study describes a self-folding origami technique that enables acute angle folding by surface bending force for the first time. We patterned plus-shaped “+” carbon black patterns on a shrinking sheet and achieved self-folding of the 2D sheet quite sharply (more than 160°) trigger with infrared (IR) light irradiation. We investigated the folding angle of our sheet with “+” pattern comparing to the sheet with slit pattern on a crease, and confirmed that our sheet could be folded at larger folding angle than the sheet with slit pattern. Next, we examined the folding angle of the sheet that had “+” pattern with different width and found that the folding angle increased when the surface bending force increased. Finally, we demonstrated this “+” pattern to fabricate 3D word objects “MEMS”. Our surface bending approach to Origami folding could open a new avenue to widen the variety and controllability of self-folding objects.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"19 1","pages":"992-993"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMS46641.2020.9056453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This study describes a self-folding origami technique that enables acute angle folding by surface bending force for the first time. We patterned plus-shaped “+” carbon black patterns on a shrinking sheet and achieved self-folding of the 2D sheet quite sharply (more than 160°) trigger with infrared (IR) light irradiation. We investigated the folding angle of our sheet with “+” pattern comparing to the sheet with slit pattern on a crease, and confirmed that our sheet could be folded at larger folding angle than the sheet with slit pattern. Next, we examined the folding angle of the sheet that had “+” pattern with different width and found that the folding angle increased when the surface bending force increased. Finally, we demonstrated this “+” pattern to fabricate 3D word objects “MEMS”. Our surface bending approach to Origami folding could open a new avenue to widen the variety and controllability of self-folding objects.