Progressive Fusion Video Super-Resolution Network via Exploiting Non-Local Spatio-Temporal Correlations

Peng Yi, Zhongyuan Wang, Kui Jiang, Junjun Jiang, Jiayi Ma
{"title":"Progressive Fusion Video Super-Resolution Network via Exploiting Non-Local Spatio-Temporal Correlations","authors":"Peng Yi, Zhongyuan Wang, Kui Jiang, Junjun Jiang, Jiayi Ma","doi":"10.1109/ICCV.2019.00320","DOIUrl":null,"url":null,"abstract":"Most previous fusion strategies either fail to fully utilize temporal information or cost too much time, and how to effectively fuse temporal information from consecutive frames plays an important role in video super-resolution (SR). In this study, we propose a novel progressive fusion network for video SR, which is designed to make better use of spatio-temporal information and is proved to be more efficient and effective than the existing direct fusion, slow fusion or 3D convolution strategies. Under this progressive fusion framework, we further introduce an improved non-local operation to avoid the complex motion estimation and motion compensation (ME&MC) procedures as in previous video SR approaches. Extensive experiments on public datasets demonstrate that our method surpasses state-of-the-art with 0.96 dB in average, and runs about 3 times faster, while requires only about half of the parameters.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"150 9 1","pages":"3106-3115"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"176","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 176

Abstract

Most previous fusion strategies either fail to fully utilize temporal information or cost too much time, and how to effectively fuse temporal information from consecutive frames plays an important role in video super-resolution (SR). In this study, we propose a novel progressive fusion network for video SR, which is designed to make better use of spatio-temporal information and is proved to be more efficient and effective than the existing direct fusion, slow fusion or 3D convolution strategies. Under this progressive fusion framework, we further introduce an improved non-local operation to avoid the complex motion estimation and motion compensation (ME&MC) procedures as in previous video SR approaches. Extensive experiments on public datasets demonstrate that our method surpasses state-of-the-art with 0.96 dB in average, and runs about 3 times faster, while requires only about half of the parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用非局部时空相关性的渐进式融合视频超分辨率网络
以往的融合策略要么不能充分利用时间信息,要么耗时太长,如何有效地融合连续帧的时间信息是实现视频超分辨率的关键。在这项研究中,我们提出了一种新的视频SR渐进融合网络,旨在更好地利用时空信息,并被证明比现有的直接融合,慢融合或三维卷积策略更高效和有效。在这种渐进式融合框架下,我们进一步引入了一种改进的非局部操作,以避免之前视频SR方法中复杂的运动估计和运动补偿(ME&MC)过程。在公共数据集上的大量实验表明,我们的方法超过了目前最先进的平均0.96 dB,运行速度提高了3倍,而只需要大约一半的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Very Long Natural Scenery Image Prediction by Outpainting VTNFP: An Image-Based Virtual Try-On Network With Body and Clothing Feature Preservation Towards Latent Attribute Discovery From Triplet Similarities Gaze360: Physically Unconstrained Gaze Estimation in the Wild Attention Bridging Network for Knowledge Transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1