Robust registration of Mouse brain slices with severe histological artifacts

Nitin Agarwal, Xiangmin Xu, M. Gopi
{"title":"Robust registration of Mouse brain slices with severe histological artifacts","authors":"Nitin Agarwal, Xiangmin Xu, M. Gopi","doi":"10.1145/3009977.3010053","DOIUrl":null,"url":null,"abstract":"Brain mapping research is facilitated by first aligning digital images of mouse brain slices to standardized atlas framework such as the Allen Reference Atlas (ARA). However, conventional processing of these brain slices introduces many histological artifacts such as tears and missing regions in the tissue, which make the automatic alignment process extremely challenging. We present an end-to-end fully automatic registration pipeline for alignment of digital images of mouse brain slices that may have histological artifacts, to a standardized atlas space. We use a geometric approach where we first align the bounding box of convex hulls of brain slice contours and atlas template contours, which are extracted using a variant of Canny edge detector. We then detect the artifacts using Constrained Delaunay Triangulation (CDT) and remove them from the contours before performing global alignment of points using iterative closest point (ICP). This is followed by a final non-linear registration by solving the Laplace's equation with Dirichlet boundary conditions. We tested our algorithm on 200 mouse brain slice images including slices acquired from conventional processing techniques having major histological artifacts, and from serial two-photon tomography (STPT) with no major artifacts. We show significant improvement over other registration techniques, both qualitatively and quantitatively, in all slices especially on slices with significant histological artifacts.","PeriodicalId":93806,"journal":{"name":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","volume":"36 1","pages":"10:1-10:8"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009977.3010053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Brain mapping research is facilitated by first aligning digital images of mouse brain slices to standardized atlas framework such as the Allen Reference Atlas (ARA). However, conventional processing of these brain slices introduces many histological artifacts such as tears and missing regions in the tissue, which make the automatic alignment process extremely challenging. We present an end-to-end fully automatic registration pipeline for alignment of digital images of mouse brain slices that may have histological artifacts, to a standardized atlas space. We use a geometric approach where we first align the bounding box of convex hulls of brain slice contours and atlas template contours, which are extracted using a variant of Canny edge detector. We then detect the artifacts using Constrained Delaunay Triangulation (CDT) and remove them from the contours before performing global alignment of points using iterative closest point (ICP). This is followed by a final non-linear registration by solving the Laplace's equation with Dirichlet boundary conditions. We tested our algorithm on 200 mouse brain slice images including slices acquired from conventional processing techniques having major histological artifacts, and from serial two-photon tomography (STPT) with no major artifacts. We show significant improvement over other registration techniques, both qualitatively and quantitatively, in all slices especially on slices with significant histological artifacts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有严重组织伪影的小鼠脑切片的鲁棒配准
首先,通过将小鼠脑切片的数字图像与标准化的图谱框架(如Allen参考图谱(ARA))对齐,促进了脑制图研究。然而,这些脑切片的传统处理引入了许多组织学伪影,如组织中的撕裂和缺失区域,这使得自动校准过程极具挑战性。我们提出了一个端到端的全自动配准管道,用于将可能具有组织学伪影的小鼠脑切片的数字图像对齐到标准化的图谱空间。我们使用了一种几何方法,首先将脑切片轮廓和atlas模板轮廓的凸壳的边界框对齐,这些轮廓是使用Canny边缘检测器的变体提取的。然后,我们使用约束Delaunay三角测量(CDT)检测工件,并在使用迭代最近点(ICP)执行点的全局对齐之前将它们从轮廓中移除。然后通过求解具有狄利克雷边界条件的拉普拉斯方程进行最后的非线性配准。我们在200张小鼠脑切片图像上测试了我们的算法,其中包括通过常规处理技术获得的具有主要组织学伪影的切片,以及通过串行双光子断层扫描(STPT)获得的无主要伪影的切片。在所有切片上,特别是在具有显著组织学伪影的切片上,我们在定性和定量上都显示了比其他配准技术的显着改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Multi-Scale Residual Dense Dehazing Network (MSRDNet) for Single Image Dehazing✱ Robust Brain State Decoding using Bidirectional Long Short Term Memory Networks in functional MRI. ICVGIP 2018: 11th Indian Conference on Computer Vision, Graphics and Image Processing, Hyderabad, India, 18-22 December, 2018 Towards semantic visual representation: augmenting image representation with natural language descriptors Adaptive artistic stylization of images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1