{"title":"Evolution of microstructure and texture of ultra-thin non-oriented electrical steel manufactured by CSP","authors":"L. Fan, Meili Qin, Xingyuan Zhao, Zheng-hai Zhu, Li-jun Xiao, Jiao-Huang, Feng-Guo","doi":"10.1051/metal/2021079","DOIUrl":null,"url":null,"abstract":"The evolution of the microstructure and texture of CSP thin-gauge non-oriented silicon steel was investigated by OM, XRD and EBSD. Results show: (1) the equiaxed surface grains with 28.13 µm average grains size accounted for 19.14% of through-thickness, while deformed band structure dominated the center layer and the other maintained at a composite structure with the first two. With the cold-rolled reduction rate enhancing to 91.15%, the stratification structure transformed into a complete fibrous structure. Annealing from 925 °C to 975 °C, the average grain size of the annealing plate similarly increased, which begins with 67.3 µm and ends at 80.58 µm. (2) The texture of the hot-rolled sheets mainly located at Cube and Goss texture, while with the cold-rolled process executing, the type and volume of texture change and finally stabilize at α fiber texture ({110}//RD) with the peak at {114}<110> at 91.15% reductions rate. The {411}<148> texture on the α* fiber line throughout maintained the strongest texture at different annealing temperatures. (3) The initial re-crystallization temperature is in the range of 600–620 °C, and the re-crystallization is roughly completed at 700 °C. Part of {411}<148> oriented grains nucleated at {411}<148> sub-grains originated from α fiber deformed structure, and the others nucleate at the grains boundaries of the deformed α fiber grains or in the inner of {111}<110> and {111}<112> grains. When the re-crystallization was accomplished at 750 °C, {411}<148> oriented grains are significantly larger than other oriented grains compared to 680 °C or the less. (4) Best magnetic properties were obtained at 975 °C with the B50 = 1.506 T and P10/400 = 16.19 W/kg.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/metal/2021079","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The evolution of the microstructure and texture of CSP thin-gauge non-oriented silicon steel was investigated by OM, XRD and EBSD. Results show: (1) the equiaxed surface grains with 28.13 µm average grains size accounted for 19.14% of through-thickness, while deformed band structure dominated the center layer and the other maintained at a composite structure with the first two. With the cold-rolled reduction rate enhancing to 91.15%, the stratification structure transformed into a complete fibrous structure. Annealing from 925 °C to 975 °C, the average grain size of the annealing plate similarly increased, which begins with 67.3 µm and ends at 80.58 µm. (2) The texture of the hot-rolled sheets mainly located at Cube and Goss texture, while with the cold-rolled process executing, the type and volume of texture change and finally stabilize at α fiber texture ({110}//RD) with the peak at {114}<110> at 91.15% reductions rate. The {411}<148> texture on the α* fiber line throughout maintained the strongest texture at different annealing temperatures. (3) The initial re-crystallization temperature is in the range of 600–620 °C, and the re-crystallization is roughly completed at 700 °C. Part of {411}<148> oriented grains nucleated at {411}<148> sub-grains originated from α fiber deformed structure, and the others nucleate at the grains boundaries of the deformed α fiber grains or in the inner of {111}<110> and {111}<112> grains. When the re-crystallization was accomplished at 750 °C, {411}<148> oriented grains are significantly larger than other oriented grains compared to 680 °C or the less. (4) Best magnetic properties were obtained at 975 °C with the B50 = 1.506 T and P10/400 = 16.19 W/kg.
期刊介绍:
Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags.
The journal is listed in the citation index Web of Science and has an Impact Factor.
It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.