Depth-Induced Multi-Scale Recurrent Attention Network for Saliency Detection

Yongri Piao, Wei Ji, Jingjing Li, Miao Zhang, Huchuan Lu
{"title":"Depth-Induced Multi-Scale Recurrent Attention Network for Saliency Detection","authors":"Yongri Piao, Wei Ji, Jingjing Li, Miao Zhang, Huchuan Lu","doi":"10.1109/ICCV.2019.00735","DOIUrl":null,"url":null,"abstract":"In this work, we propose a novel depth-induced multi-scale recurrent attention network for saliency detection. It achieves dramatic performance especially in complex scenarios. There are three main contributions of our network that are experimentally demonstrated to have significant practical merits. First, we design an effective depth refinement block using residual connections to fully extract and fuse multi-level paired complementary cues from RGB and depth streams. Second, depth cues with abundant spatial information are innovatively combined with multi-scale context features for accurately locating salient objects. Third, we boost our model's performance by a novel recurrent attention module inspired by Internal Generative Mechanism of human brain. This module can generate more accurate saliency results via comprehensively learning the internal semantic relation of the fused feature and progressively optimizing local details with memory-oriented scene understanding. In addition, we create a large scale RGB-D dataset containing more complex scenarios, which can contribute to comprehensively evaluating saliency models. Extensive experiments on six public datasets and ours demonstrate that our method can accurately identify salient objects and achieve consistently superior performance over 16 state-of-the-art RGB and RGB-D approaches.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"31 1","pages":"7253-7262"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"300","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 300

Abstract

In this work, we propose a novel depth-induced multi-scale recurrent attention network for saliency detection. It achieves dramatic performance especially in complex scenarios. There are three main contributions of our network that are experimentally demonstrated to have significant practical merits. First, we design an effective depth refinement block using residual connections to fully extract and fuse multi-level paired complementary cues from RGB and depth streams. Second, depth cues with abundant spatial information are innovatively combined with multi-scale context features for accurately locating salient objects. Third, we boost our model's performance by a novel recurrent attention module inspired by Internal Generative Mechanism of human brain. This module can generate more accurate saliency results via comprehensively learning the internal semantic relation of the fused feature and progressively optimizing local details with memory-oriented scene understanding. In addition, we create a large scale RGB-D dataset containing more complex scenarios, which can contribute to comprehensively evaluating saliency models. Extensive experiments on six public datasets and ours demonstrate that our method can accurately identify salient objects and achieve consistently superior performance over 16 state-of-the-art RGB and RGB-D approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度诱导的多尺度循环注意网络显著性检测
在这项工作中,我们提出了一种新的深度诱导的多尺度循环注意网络,用于显著性检测。特别是在复杂的场景中,它实现了戏剧性的表现。我们的网络有三个主要贡献,实验证明具有重要的实际价值。首先,我们设计了一个有效的深度细化块,利用残差连接从RGB和深度流中充分提取和融合多层次配对互补线索。其次,创新地将具有丰富空间信息的深度线索与多尺度上下文特征相结合,实现显著目标的精确定位;第三,我们借鉴了人类大脑的内部生成机制,设计了一种新颖的循环注意模块,提高了模型的性能。该模块通过综合学习融合特征的内部语义关系,以记忆为导向的场景理解,逐步优化局部细节,生成更准确的显著性结果。此外,我们创建了一个包含更复杂场景的大规模RGB-D数据集,这有助于全面评估显著性模型。在6个公共数据集上进行的大量实验表明,我们的方法可以准确地识别显著目标,并在16种最先进的RGB和RGB- d方法中获得一致的卓越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Very Long Natural Scenery Image Prediction by Outpainting VTNFP: An Image-Based Virtual Try-On Network With Body and Clothing Feature Preservation Towards Latent Attribute Discovery From Triplet Similarities Gaze360: Physically Unconstrained Gaze Estimation in the Wild Attention Bridging Network for Knowledge Transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1