First-principles study of gas adsorptin on indium nitride monolayer as gas sensor applications

Xiang Sun, Yiping Huang, Junke Jiang, Q. Liang, R. Meng, Chun-Jian Tan, Qun Yang, Xanping Chen
{"title":"First-principles study of gas adsorptin on indium nitride monolayer as gas sensor applications","authors":"Xiang Sun, Yiping Huang, Junke Jiang, Q. Liang, R. Meng, Chun-Jian Tan, Qun Yang, Xanping Chen","doi":"10.1109/ICEPT.2016.7583243","DOIUrl":null,"url":null,"abstract":"Using first-principles calculation within density functional theory, we study the gas (H<sub>2</sub>O, H<sub>2</sub>, H<sub>2</sub>S, and CO<sub>2</sub>) adsorption properties of single-layer indium nitride (InN). The four different adsorption sites (Bridge, In, N, Hollow) are chosen to investigate and the most sensitive adsorption site is found (N site for H<sub>2</sub> and H<sub>2</sub>O gases; In site for H<sub>2</sub>S; center site for CO<sub>2</sub>) based on the adsorption energy, band gap and charge transfer. Through our research, the results indicate that InN is sensitive to NH<sub>3</sub> and H<sub>2</sub>O. It is shown that H<sub>2</sub> gas molecules act as charge acceptors for the monolayer, except H<sub>2</sub>S, H<sub>2</sub>O adsorption which are found to be a charge donor. We perform a perpendicular electric field to the system and find its enhancement effect for adsorption energy of gas adsorption. Our theoretical results indicates that monolayer InN is a promising candidate for gas sensing applications.","PeriodicalId":6881,"journal":{"name":"2016 17th International Conference on Electronic Packaging Technology (ICEPT)","volume":"73 1","pages":"767-770"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Conference on Electronic Packaging Technology (ICEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPT.2016.7583243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Using first-principles calculation within density functional theory, we study the gas (H2O, H2, H2S, and CO2) adsorption properties of single-layer indium nitride (InN). The four different adsorption sites (Bridge, In, N, Hollow) are chosen to investigate and the most sensitive adsorption site is found (N site for H2 and H2O gases; In site for H2S; center site for CO2) based on the adsorption energy, band gap and charge transfer. Through our research, the results indicate that InN is sensitive to NH3 and H2O. It is shown that H2 gas molecules act as charge acceptors for the monolayer, except H2S, H2O adsorption which are found to be a charge donor. We perform a perpendicular electric field to the system and find its enhancement effect for adsorption energy of gas adsorption. Our theoretical results indicates that monolayer InN is a promising candidate for gas sensing applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氮化铟单层气体吸附在气体传感器上的第一性原理研究
利用密度泛函理论中的第一性原理计算,研究了单层氮化铟(InN)对气体(H2O、H2、H2S和CO2)的吸附性能。选择4种不同的吸附位点(Bridge、In、N、Hollow)进行研究,发现对H2和H2O气体最敏感的吸附位点为N位点;现场为H2S;基于吸附能、带隙和电荷转移。通过我们的研究,结果表明,InN对NH3和H2O敏感。结果表明,除H2S、H2O为电荷供体外,H2气体分子为单分子膜的电荷受体。对系统施加垂直电场,发现其对气体吸附能的增强作用。我们的理论结果表明,单层InN是气体传感应用的一个有前途的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unlocking the full potential of Lithography for Advanced Packaging A compact QCW conduction-cooled high power semiconductor laser array Thermal behavior of microchannel cooled high power diode laser arrays Analysis of photoluminescence mechanisms and thermal quenching effects for multicolor phosphor films used in high color rendering white LEDs Interfacial reaction and IMC growth between the undercooled liquid lead-free solder and Cu metallization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1