YANA: an efficient privacy-preserving recommender system for online social communities

Dongsheng Li, Q. Lv, L. Shang, Ning Gu
{"title":"YANA: an efficient privacy-preserving recommender system for online social communities","authors":"Dongsheng Li, Q. Lv, L. Shang, Ning Gu","doi":"10.1145/2063576.2063943","DOIUrl":null,"url":null,"abstract":"In online social communities, many recommender systems use collaborative filtering, a method that makes recommendations based on what are liked by other users with similar interests. Serious privacy issues may arise in this process, as sensitive personal information (e.g., content interests) may be collected and disclosed to other parties, especially the recommender server. In this paper, we propose YANA (short for \"you are not alone\"), an efficient group-based privacy-preserving collaborative filtering system for content recommendation in online social communities. We have developed a prototype system on desktop and mobile devices, and evaluated it using real world data. The results demonstrate that YANA can effectively protect users' privacy, while achieving high recommendation quality and energy efficiency.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"23 1","pages":"2269-2272"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In online social communities, many recommender systems use collaborative filtering, a method that makes recommendations based on what are liked by other users with similar interests. Serious privacy issues may arise in this process, as sensitive personal information (e.g., content interests) may be collected and disclosed to other parties, especially the recommender server. In this paper, we propose YANA (short for "you are not alone"), an efficient group-based privacy-preserving collaborative filtering system for content recommendation in online social communities. We have developed a prototype system on desktop and mobile devices, and evaluated it using real world data. The results demonstrate that YANA can effectively protect users' privacy, while achieving high recommendation quality and energy efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
YANA:一个高效的在线社交社区隐私保护推荐系统
在在线社交社区中,许多推荐系统使用协同过滤,这是一种基于其他有相似兴趣的用户喜欢的内容进行推荐的方法。在此过程中可能会出现严重的隐私问题,因为敏感的个人信息(例如,内容兴趣)可能会被收集并披露给其他方,特别是推荐服务器。在本文中,我们提出了YANA (you are not alone的缩写),这是一个高效的基于群体的隐私保护协同过滤系统,用于在线社交社区的内容推荐。我们已经在桌面和移动设备上开发了一个原型系统,并使用真实世界的数据对其进行了评估。结果表明,YANA可以有效地保护用户隐私,同时获得较高的推荐质量和能效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
scACT: Accurate Cross-modality Translation via Cycle-consistent Training from Unpaired Single-cell Data. iMIRACLE: an Iterative Multi-View Graph Neural Network to Model Intercellular Gene Regulation from Spatial Transcriptomic Data. Federated Node Classification over Distributed Ego-Networks with Secure Contrastive Embedding Sharing. Enabling Health Data Sharing with Fine-Grained Privacy. MedCV: An Interactive Visualization System for Patient Cohort Identification from Medical Claim Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1