A heterogeneous CPU-GPU implementation for discrete elements simulation with multiple GPUs

Yuan Tian, Junjie Lai, Lei Yang, Ji Qi, Qingguo Zhou
{"title":"A heterogeneous CPU-GPU implementation for discrete elements simulation with multiple GPUs","authors":"Yuan Tian, Junjie Lai, Lei Yang, Ji Qi, Qingguo Zhou","doi":"10.1109/ICAWST.2013.6765500","DOIUrl":null,"url":null,"abstract":"To calculate the large number of particles in discrete elements simulation, a heterogeneous CPU-GPU implementation with multiple GPUs is developed. The implementation is achieved by combining two different parallel programming languages so that it can be assigned to a CPU-GPU cluster. The communication between nodes uses Massage Passing Interface (MPI) implementation for dynamic domain decomposition, particles re-mapping and data copying of overlapping areas. Other works are assigned to GPUs to obtain a high computational speed. The results of strong and weak scalability tests are analyzed for different number of GPUs. Last, the LAMMPS is used as CPU platform to compare with multi-GPU application for reflecting the superiority of using heterogeneous implementation.","PeriodicalId":68697,"journal":{"name":"炎黄地理","volume":"71 1","pages":"547-552"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"炎黄地理","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/ICAWST.2013.6765500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

To calculate the large number of particles in discrete elements simulation, a heterogeneous CPU-GPU implementation with multiple GPUs is developed. The implementation is achieved by combining two different parallel programming languages so that it can be assigned to a CPU-GPU cluster. The communication between nodes uses Massage Passing Interface (MPI) implementation for dynamic domain decomposition, particles re-mapping and data copying of overlapping areas. Other works are assigned to GPUs to obtain a high computational speed. The results of strong and weak scalability tests are analyzed for different number of GPUs. Last, the LAMMPS is used as CPU platform to compare with multi-GPU application for reflecting the superiority of using heterogeneous implementation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个异构CPU-GPU实现离散元素模拟与多个gpu
为了在离散元模拟中计算大量粒子,开发了一种多gpu的异构CPU-GPU实现。该实现是通过结合两种不同的并行编程语言来实现的,因此可以将其分配给CPU-GPU集群。节点间通信采用MPI (Massage Passing Interface)实现动态域分解、粒子重映射和重叠区域数据复制。其他工作分配给gpu以获得较高的计算速度。分析了不同gpu数量下的强扩展性和弱扩展性测试结果。最后,将LAMMPS作为CPU平台与多gpu应用进行比较,以体现采用异构实现的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
784
期刊最新文献
Make decision boundary smoother by transition learning Neurophysiological evidence of the cognitive cycle and the emergence of awareness An efficient implementation of normalized cross-correlation image matching based on pyramid A hybrid recommender system based non-common items in social media "Canderoid": A mobile system to remotely monitor travelling status of the elderly with dementia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1