Yuan Tian, Junjie Lai, Lei Yang, Ji Qi, Qingguo Zhou
{"title":"A heterogeneous CPU-GPU implementation for discrete elements simulation with multiple GPUs","authors":"Yuan Tian, Junjie Lai, Lei Yang, Ji Qi, Qingguo Zhou","doi":"10.1109/ICAWST.2013.6765500","DOIUrl":null,"url":null,"abstract":"To calculate the large number of particles in discrete elements simulation, a heterogeneous CPU-GPU implementation with multiple GPUs is developed. The implementation is achieved by combining two different parallel programming languages so that it can be assigned to a CPU-GPU cluster. The communication between nodes uses Massage Passing Interface (MPI) implementation for dynamic domain decomposition, particles re-mapping and data copying of overlapping areas. Other works are assigned to GPUs to obtain a high computational speed. The results of strong and weak scalability tests are analyzed for different number of GPUs. Last, the LAMMPS is used as CPU platform to compare with multi-GPU application for reflecting the superiority of using heterogeneous implementation.","PeriodicalId":68697,"journal":{"name":"炎黄地理","volume":"71 1","pages":"547-552"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"炎黄地理","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/ICAWST.2013.6765500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
To calculate the large number of particles in discrete elements simulation, a heterogeneous CPU-GPU implementation with multiple GPUs is developed. The implementation is achieved by combining two different parallel programming languages so that it can be assigned to a CPU-GPU cluster. The communication between nodes uses Massage Passing Interface (MPI) implementation for dynamic domain decomposition, particles re-mapping and data copying of overlapping areas. Other works are assigned to GPUs to obtain a high computational speed. The results of strong and weak scalability tests are analyzed for different number of GPUs. Last, the LAMMPS is used as CPU platform to compare with multi-GPU application for reflecting the superiority of using heterogeneous implementation.