{"title":"Energy and Economic Analysis of a Novel Hybrid Photovoltaic-Thermoelectric System for Building Cooling Applications","authors":"M. Seyednezhad, H. Najafi","doi":"10.1115/imece2019-11644","DOIUrl":null,"url":null,"abstract":"\n An energy and economic analysis of a novel hybrid photovoltaic-thermoelectric (PV-TEC) system for building cooling applications is presented. It is considered that the roof is constructed from building integrated photovoltaic panels (BIPV) and thermoelectric (TEC) cooling modules are installed on top of the ceiling. The TEC modules are supplied by the PV panels, reducing the ceiling temperature and therefore maintaining a comfortable temperature for the occupants. A mathematical model is developed in MATLAB to simulate the performance of the hybrid PV-TEC system. A building energy model is also developed in eQuest to simulate the performance of a case study office building in Melbourne, FL. The hourly cooling demands are evaluated from the building model, and the PV-TEC system is sized to satisfy the cooling loads accordingly. The total annual energy consumption of the PV-TEC system is then calculated for various operating conditions according to the given characteristics for the selected TEC module and the required number of PV panels to supply the thermoelectric system with adequate electricity is evaluated. The cost of the system and associated savings are determined and discussed in detail. The results show that the proposed system is capable of maintaining the set point temperature for occupants’ comfort. The initial estimated cost of the hybrid PV-TEC system is found significantly higher than conventional air conditioning systems. However, the attractive features of the proposed system including high controllability and maintenance free operation as well as no need to refrigerant or major moving part are some of the aspects that are promising for building cooling applications.","PeriodicalId":23629,"journal":{"name":"Volume 6: Energy","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-11644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An energy and economic analysis of a novel hybrid photovoltaic-thermoelectric (PV-TEC) system for building cooling applications is presented. It is considered that the roof is constructed from building integrated photovoltaic panels (BIPV) and thermoelectric (TEC) cooling modules are installed on top of the ceiling. The TEC modules are supplied by the PV panels, reducing the ceiling temperature and therefore maintaining a comfortable temperature for the occupants. A mathematical model is developed in MATLAB to simulate the performance of the hybrid PV-TEC system. A building energy model is also developed in eQuest to simulate the performance of a case study office building in Melbourne, FL. The hourly cooling demands are evaluated from the building model, and the PV-TEC system is sized to satisfy the cooling loads accordingly. The total annual energy consumption of the PV-TEC system is then calculated for various operating conditions according to the given characteristics for the selected TEC module and the required number of PV panels to supply the thermoelectric system with adequate electricity is evaluated. The cost of the system and associated savings are determined and discussed in detail. The results show that the proposed system is capable of maintaining the set point temperature for occupants’ comfort. The initial estimated cost of the hybrid PV-TEC system is found significantly higher than conventional air conditioning systems. However, the attractive features of the proposed system including high controllability and maintenance free operation as well as no need to refrigerant or major moving part are some of the aspects that are promising for building cooling applications.