Anisotropic thermal expansion in high-entropy multicomponent AlB2-type diboride solid solutions

IF 16.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING International Journal of Extreme Manufacturing Pub Date : 2022-12-15 DOI:10.1088/2631-7990/acabee
F. Monteverde, M. Gaboardi, F. Saraga, Lun Feng, W. Fahrenholtz, G. Hilmas
{"title":"Anisotropic thermal expansion in high-entropy multicomponent AlB2-type diboride solid solutions","authors":"F. Monteverde, M. Gaboardi, F. Saraga, Lun Feng, W. Fahrenholtz, G. Hilmas","doi":"10.1088/2631-7990/acabee","DOIUrl":null,"url":null,"abstract":"High-entropy (HE) ultra-high temperature ceramics have the chance to pave the way for future applications propelling technology advantages in the fields of energy conversion and extreme environmental shielding. Among others, HE diborides stand out owing to their intrinsic anisotropic layered structure and ability to withstand ultra-high temperatures. Herein, we employed in-situ high-resolution synchrotron diffraction over a plethora of multicomponent compositions, with four to seven transition metals, with the intent of understanding the thermal lattice expansion following different composition or synthesis process. As a result, we were able to control the average thermal expansion (TE) from 1.3 × 10−6 to 6.9 × 10−6 K−1 depending on the combination of metals, with a variation of in-plane to out-of-plane TE ratio ranging from 1.5 to 2.8.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"76 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/acabee","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1

Abstract

High-entropy (HE) ultra-high temperature ceramics have the chance to pave the way for future applications propelling technology advantages in the fields of energy conversion and extreme environmental shielding. Among others, HE diborides stand out owing to their intrinsic anisotropic layered structure and ability to withstand ultra-high temperatures. Herein, we employed in-situ high-resolution synchrotron diffraction over a plethora of multicomponent compositions, with four to seven transition metals, with the intent of understanding the thermal lattice expansion following different composition or synthesis process. As a result, we were able to control the average thermal expansion (TE) from 1.3 × 10−6 to 6.9 × 10−6 K−1 depending on the combination of metals, with a variation of in-plane to out-of-plane TE ratio ranging from 1.5 to 2.8.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高熵多组分alb2型二硼化物固溶体的各向异性热膨胀
高熵(HE)超高温陶瓷有机会为未来的应用铺平道路,在能量转换和极端环境屏蔽领域推动技术优势。其中,HE二硼化物因其固有的各向异性层状结构和承受超高温的能力而脱颖而出。在此,我们采用原位高分辨率同步加速器衍射对大量的多组分组成,4到7过渡金属,以了解不同的组成或合成过程后的热晶格膨胀。因此,我们能够根据金属的组合将平均热膨胀(TE)控制在1.3 × 10−6到6.9 × 10−6 K−1之间,而面内与面外的热膨胀比变化范围为1.5到2.8。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Extreme Manufacturing
International Journal of Extreme Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
17.70
自引率
6.10%
发文量
83
审稿时长
12 weeks
期刊介绍: The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.
期刊最新文献
Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration. Additively manufactured Ti-Ta-Cu alloys for the next-generation load-bearing implants. A novel approach of jet polishing for interior surface of small grooved components using three developed setups Elliptical vibration chiseling: a novel process for texturing ultra-high-aspect-ratio microstructures on the metallic surface Printability disparities in heterogeneous material combinations via laser directed energy deposition: a comparative study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1