Enabling Allogeneic T Cell-Based Therapies: Scalable Stirred-Tank Bioreactor Mediated Manufacturing

IF 2.7 Q3 ENGINEERING, BIOMEDICAL Frontiers in medical technology Pub Date : 2022-05-30 DOI:10.3389/fmedt.2022.850565
H. Gatla, N. Uth, Y. Levinson, A. Navaei, A. Sargent, S. Ramaswamy, Inbar Friedrich Ben-Nun
{"title":"Enabling Allogeneic T Cell-Based Therapies: Scalable Stirred-Tank Bioreactor Mediated Manufacturing","authors":"H. Gatla, N. Uth, Y. Levinson, A. Navaei, A. Sargent, S. Ramaswamy, Inbar Friedrich Ben-Nun","doi":"10.3389/fmedt.2022.850565","DOIUrl":null,"url":null,"abstract":"Allogeneic T cells are key immune therapeutic cells to fight cancer and other clinical indications. High T cell dose per patient and increasing patient numbers result in clinical demand for a large number of allogeneic T cells. This necessitates a manufacturing platform that can be scaled up while retaining cell quality. Here we present a closed and scalable platform for T cell manufacturing to meet clinical demand. Upstream manufacturing steps of T cell activation and expansion are done in-vessel, in a stirred-tank bioreactor. T cell selection, which is necessary for CAR-T-based therapy, is done in the bioreactor itself, thus maintaining optimal culture conditions through the selection step. Platform's attributes of automation and performing the steps of T cell activation, expansion, and selection in-vessel, greatly contribute to enhancing process control, cell quality, and to the reduction of manual labor and contamination risk. In addition, the viability of integrating a closed, automated, downstream process of cell concentration, is demonstrated. The presented T cell manufacturing platform has scale-up capabilities while preserving key factors of cell quality and process control.","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in medical technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fmedt.2022.850565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Allogeneic T cells are key immune therapeutic cells to fight cancer and other clinical indications. High T cell dose per patient and increasing patient numbers result in clinical demand for a large number of allogeneic T cells. This necessitates a manufacturing platform that can be scaled up while retaining cell quality. Here we present a closed and scalable platform for T cell manufacturing to meet clinical demand. Upstream manufacturing steps of T cell activation and expansion are done in-vessel, in a stirred-tank bioreactor. T cell selection, which is necessary for CAR-T-based therapy, is done in the bioreactor itself, thus maintaining optimal culture conditions through the selection step. Platform's attributes of automation and performing the steps of T cell activation, expansion, and selection in-vessel, greatly contribute to enhancing process control, cell quality, and to the reduction of manual labor and contamination risk. In addition, the viability of integrating a closed, automated, downstream process of cell concentration, is demonstrated. The presented T cell manufacturing platform has scale-up capabilities while preserving key factors of cell quality and process control.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现基于同种异体T细胞的治疗:可扩展的搅拌槽生物反应器介导的制造
同种异体T细胞是对抗癌症和其他临床适应症的关键免疫治疗细胞。每个患者的高T细胞剂量和患者数量的增加导致临床对大量同种异体T细胞的需求。这就需要一个可以在保持电池质量的同时扩大规模的制造平台。在这里,我们提出了一个封闭的、可扩展的T细胞制造平台,以满足临床需求。T细胞活化和扩增的上游制造步骤是在容器中,在搅拌槽生物反应器中完成的。T细胞的选择是car -based治疗所必需的,在生物反应器中进行,从而在选择步骤中保持最佳培养条件。平台的自动化属性和在容器内完成T细胞活化、扩增和选择的步骤,极大地有助于加强过程控制,提高细胞质量,减少人工劳动和污染风险。此外,整合一个封闭的,自动化的,细胞浓缩的下游过程的可行性,被证明。所提出的T细胞制造平台具有放大能力,同时保留细胞质量和过程控制的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Celiac disease gut microbiome studies in the third millennium: reviewing the findings and gaps of available literature. Structural brain preservation: a potential bridge to future medical technologies. Early detection of deteriorating patients in general wards through continuous contactless vital signs monitoring. Detection and counting of Leishmania intracellular parasites in microscopy images. From intra- to extra-uterine: early phase design of a transfer to extra-uterine life support through medical simulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1