spTest: An R Package Implementing Nonparametric Tests of Isotropy

Zachary D. Weller
{"title":"spTest: An R Package Implementing Nonparametric Tests of Isotropy","authors":"Zachary D. Weller","doi":"10.18637/JSS.V083.I04","DOIUrl":null,"url":null,"abstract":"An important step of modeling spatially-referenced data is appropriately specifying the second order properties of the random field. A scientist developing a model for spatial data has a number of options regarding the nature of the dependence between observations. One of these options is deciding whether or not the dependence between observations depends on direction, or, in other words, whether or not the spatial covariance function is isotropic. Isotropy implies that spatial dependence is a function of only the distance and not the direction of the spatial separation between sampling locations. A researcher may use graphical techniques, such as directional sample semivariograms, to determine whether an assumption of isotropy holds. These graphical diagnostics can be difficult to assess, subject to personal interpretation, and potentially misleading as they typically do not include a measure of uncertainty. In order to escape these issues, a hypothesis test of the assumption of isotropy may be more desirable. To avoid specification of the covariance function, a number of nonparametric tests of isotropy have been developed using both the spatial and spectral representations of random fields. Several of these nonparametric tests are implemented in the R package spTest, available on CRAN. We demonstrate how graphical techniques and the hypothesis tests programmed in spTest can be used in practice to assess isotropy properties.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18637/JSS.V083.I04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

An important step of modeling spatially-referenced data is appropriately specifying the second order properties of the random field. A scientist developing a model for spatial data has a number of options regarding the nature of the dependence between observations. One of these options is deciding whether or not the dependence between observations depends on direction, or, in other words, whether or not the spatial covariance function is isotropic. Isotropy implies that spatial dependence is a function of only the distance and not the direction of the spatial separation between sampling locations. A researcher may use graphical techniques, such as directional sample semivariograms, to determine whether an assumption of isotropy holds. These graphical diagnostics can be difficult to assess, subject to personal interpretation, and potentially misleading as they typically do not include a measure of uncertainty. In order to escape these issues, a hypothesis test of the assumption of isotropy may be more desirable. To avoid specification of the covariance function, a number of nonparametric tests of isotropy have been developed using both the spatial and spectral representations of random fields. Several of these nonparametric tests are implemented in the R package spTest, available on CRAN. We demonstrate how graphical techniques and the hypothesis tests programmed in spTest can be used in practice to assess isotropy properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
spTest:一个实现各向同性非参数测试的R包
对空间引用数据建模的一个重要步骤是适当地指定随机场的二阶属性。开发空间数据模型的科学家对于观测之间的依赖性的性质有许多选择。其中一个选择是决定观测之间的依赖是否取决于方向,或者换句话说,空间协方差函数是否各向同性。各向同性意味着空间依赖性仅是采样位置之间空间分离的距离而不是方向的函数。研究人员可以使用图形技术,如定向样本半变异图,来确定各向同性的假设是否成立。这些图形诊断可能难以评估,受个人解释的影响,并且可能具有误导性,因为它们通常不包括不确定性的测量。为了避免这些问题,各向同性假设的假设检验可能更可取。为了避免协方差函数的规范,已经使用随机场的空间和光谱表示开发了一些各向同性的非参数测试。其中一些非参数测试是在R包spTest中实现的,可以在CRAN上获得。我们演示了在spTest中编程的图形技术和假设检验如何在实践中用于评估各向同性性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Double Happiness: Enhancing the Coupled Gains of L-lag Coupling via Control Variates. SCOREDRIVENMODELS.JL: A JULIA PACKAGE FOR GENERALIZED AUTOREGRESSIVE SCORE MODELS Simple conditions for convergence of sequential Monte Carlo genealogies with applications Increasing the efficiency of Sequential Monte Carlo samplers through the use of approximately optimal L-kernels Particle Methods for Stochastic Differential Equation Mixed Effects Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1